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What Are Containers and Why
Should | Use Them?
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This first chapter will introduce you to the world of containers, showing how
they streamline the modern software supply chain and address the security
challenges that often arise with traditional deployment models. We'll assume
no or minimal prior knowledge of containers, so our first steps focus on
illustrating the friction points in legacy workflows and demonstrating how
containers significantly reduce that friction. Building on this foundation, we'll
explore both the classic ecosystem—where upstream OSS components
(collectively known as Moby) serve as the building blocks behind familiar
Docker products—and the latest containerization trends that have emerged
or solidified since 2022, the time when the last edition of the book was
written. You'll learn not only why containers were a revolutionary concept
when they first appeared but also how features such as rootless operation
modes, supply chain security enhancements, and new orchestration
techniques are shaping today's container landscape. By the end of this
chapter, you'll understand how containers are assembled and why they
matter more than ever in delivering secure, portable applications.

The chapter covers the following topics:

e What are containers?

e Why are containers important?

e What's the benefit of using containers for me or my company?
e The Moby project

e Docker products

e Container architecture

e What's new in containerization


https://packt.link/mqfS2

After completing this chapter, you will be able to do the following:

e Explain what containers are to an interested layperson, using everyday
analogies such as physical cargo containers versus bulk shipping

e Justify why containers are so important by likening their approach to the
difference between apartment homes and single-family homes, or
similar simplified examples

e Name at least four upstream OSS components (united under Moby) that
power Docker products such as Docker Desktop

e Draw a high-level sketch of the Docker container architecture to
illustrate how layered images and namespaces fit together

* Identify the recent developments (post-2022) in containerization,
including new security measures, rootless modes, and enhanced
Kubernetes debugging, and explain how they continue to shape modern
deployments

Let's get started!

What are containers?

A software container is a pretty abstract thing, so it might help if we start with
an analogy that should be pretty familiar to most of you. The analogy is a
shipping container in the transportation industry. Throughout history, people
have been transporting goods from one location to another by various means.
Before the invention of the wheel, goods would most probably have been
transported in bags, baskets, or chests on the shoulders of humans
themselves, or they might have used animals such as donkeys, camels, or
elephants to transport them. With the invention of the wheel, transportation
became a bit more efficient as humans built roads along which they could
move their carts. Many more goods could be transported at a time. When the
first steam-driven machines and, later, gasoline-driven engines were
introduced, transportation became even more powerful. We now transport
huge amounts of goods on planes, trains, ships, and trucks. At the same time,
the types of goods became more and more diverse, and sometimes complex to
handle. In all these thousands of years, one thing hasn't changed, and thatis
the necessity to unload goods at a target location and maybe load them onto
another means of transportation. Take, for example, a farmer bringing a cart



tull of apples to a central train station where the apples are then loaded onto a
train, together with all the apples from many other farmers. Or think of a
winemaker bringing their barrels of wine with a truck to the port, where they
are unloaded and then transferred to a ship that will transport those barrels
overseas.

This unloading from one means of transportation and loading onto another
means of transportation was a really complex and tedious process. Every type
of product was packaged in its own way and thus had to be handled in its own
particular way. Also, loose goods faced the risk of being stolen by unethical
workers or damaged in the process of being handled.
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Figure 1.1 - Sailors unloading goods from a ship



Then, containers came along, and they totally revolutionized the
transportation industry. A container is just a metallic box with standardized
dimensions. The length, width, and height of each container are the same.
This is a very important point. Without the world agreeing on a standard size,
the whole container thing would not have been as successful as it is now.
Now, with standardized containers, companies that want to have their goods
transported from A to B package those goods into these containers. Then, they
call a shipper, who comes with a standardized means of transportation. This
can be a truck that can load a container, or a train whose wagons can each
transport one or several containers. Finally, we have ships that are specialized
in transporting huge numbers of containers. Shippers never need to unpack
and repackage goods. For a shipper, a container is just a black box, and they
are not interested in what is in it, nor should they care in most cases. Itis just
a big iron box with standard dimensions. Packaging goods into containers is
now fully delegated to the parties who want to have their goods shipped, and
they should know how to handle and package those goods. Since all
containers have the same agreed-upon shape and dimensions, shippers can
use standardized tools to handle containers—that is, cranes that unload
containers, say from a train or a truck, and load them onto a ship, and vice
versa. One type of crane is enough to handle all the containers that come
along over time. Also, the means of transportation can be standardized, such
as container ships, trucks, and trains. Because of all this standardization, all
the processes in and around shipping goods could also be standardized and
thus made much more efficient than they were before the introduction of
containers.
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Figure 1.2 - Container ship being loaded in a port

Now, you should have a good understanding of why shipping containers are
so important and why they revolutionized the whole transportation industry.
I chose this analogy purposefully since the software containers that we are
going to introduce here fulfill the exact same role in the so-called software
supply chain as shipping containers do in the supply chain of physical goods.

Let's then have a look at what this whole thing means translated to the IT
industry and software development, shall we? In the old days, developers
would develop new applications. Once an application was completed in their
eyes, they would hand that application over to the operations engineers, who
were then supposed to install it on the production servers and get it running.
If the operations engineers were lucky, they even got a somewhat accurate
document with installation instructions from the developers. So far, so good,



and life was easy. But things got a bit out of hand when, in an enterprise, there
were many teams of developers that created quite different types of
applications, yet all of them needed to be installed on the same production
servers and kept running there. Usually, each application has some external
dependencies, such as the framework it was built on, the libraries it used, and
so on. Sometimes, two applications use the same framework but in different
versions that might or might not be compatible with each other. Our
operations engineers' lives became much harder over time. They had to be
really creative with how they loaded their ships, that is, their servers, with
different applications without breaking something. Installing a new version of
a certain application was now a complex project on its own, and often needed
months of planning and testing beforehand. In other words, there was a lot of
friction in the software supply chain.

But these days, companies rely more and more on software, and the release
cycles need to become shorter and shorter. Companies cannot afford to just
release application updates once or twice a year anymore. Applications need
to be updated in a matter of weeks or days, or sometimes even multiple times
per day. Companies that do not comply risk going out of business due to the
lack of agility. So, what's the solution? One of the first approaches was to use
virtual machines (VMs). Instead of running multiple applications all on the
same server, companies would package and run a single application on each
VM. With this, all the compatibility problems were gone, and life seemed to be
good again. Unfortunately, that happiness didn't last long. VMs are pretty
heavy beasts on their own since they all contain a full-blown operating
system, such as Linux or Windows Server, and all that for just a single
application. This is just as if you were in the transportation industry and were
using a whole ship just to transport a single truckload of bananas. What a
waste! That could never be profitable. The ultimate solution to this problem
was to provide something that is much more lightweight than VMs but is also
able to perfectly encapsulate the goods it needs to transport. Here, the goods
are the actual application that has been written by our developers, plus—and
this is important—all the external dependencies of the application, such as its
framework, libraries, configurations, and more. This holy grail of a software
packaging mechanism is the Docker container.



Developers use Docker containers to package their applications, frameworks,
and libraries into them, and then they ship those containers to the testers or
operations engineers. For testers and operations engineers, a container is just
a black box. It is a standardized black box, though. All containers, no matter
what application runs inside them, can be treated equally. The engineers
know that if any container runs on their servers, then any other containers
should run too. And this is actually true, apart from some edge cases, which
always exist. Thus, Docker containers are a means to package applications
and their dependencies in a standardized way. Docker then coined the phrase
Build, ship, and run anywhere.

Why are containers important?

These days, the time between new releases of an application becomes shorter
and shorter, yet the software itself does not become any simpler. On the
contrary, software projects increase in complexity. Thus, we need a way to
tame the beast and simplify the software supply chain. Also, every day, we
hear that cyberattacks are on the rise. Many well-known companies are and
have been affected by security breaches. Highly sensitive customer data gets
stolen during such events, such as social security numbers, credit card
information, health-related information, and more. Not only is customer data
compromised, but sensitive company secrets are stolen, too. Containers can
help in many ways. In a published report, Gartner found that applications
running in a container are more secure than their counterparts that are not
running in a container. Containers use Linux security primitives such as Linux
kernel namespaces to sandbox different applications running on the same
computer and control groups (cgroups) to avoid the noisy-neighbor problem,
where one bad application is using all the available resources of a server and
starving all other applications. Since container images are immutable, as we
will learn later, it is easy to have them scanned for common vulnerabilities
and exposures (CVEs), and in doing so, increase the overall security of our
applications. Another way to make our software supply chain more secure is
to have our containers use content trust. Content trust ensures that the
author of a container image is who they say they are and that the consumer of
the container image has a guarantee that the image has not been tampered
with in transit. The latter is known as a man-in-the-middle (MITM) attack.



Everything I have just said is, of course, technically also possible without
using containers, but since containers introduce a globally accepted standard,
they make it so much easier to implement these best practices and enforce
them. OK, but security is not the only reason containers are important. There
are other reasons, too. One is the fact that containers make it easy to simulate
a production-like environment, even on a developer's laptop. If we can
containerize any application, then we can also containerize, say, a database
such as Oracle, PostgreSQL, or MS SQL Server. Now, everyone who has ever
had to install an Oracle database on a computer knows that this is not the
easiest thing to do, and it takes up a lot of precious space on your computer.
You would not want to do that to your development laptop just to test
whether the application you developed really works end-to-end. With
containers at hand, we can run a full-blown relational database in a container
as easily as saying one, two, three. And when we are done with testing, we can
just stop and delete the container, and the database will be gone, without
leaving a single trace on our computer. Since containers are very lean
compared to VMs, it is common to have many containers running at the same
time on a developer's laptop without overwhelming the laptop. A third reason
containers are important is that operators can finally concentrate on what
they are good at—provisioning the infrastructure and running and
monitoring applications in production. When the applications that must run
on a production system are all containerized, then operators can start to
standardize their infrastructure. Every server becomes just another Docker
host. No special libraries or frameworks need to be installed on those servers
—just an OS and a container runtime such as Docker. Furthermore, operators
do not have to have intimate knowledge of the internals of applications
anymore, since those applications run self-contained in containers that ought
to look like black boxes to them, like how shipping containers look to
personnel in the transportation industry.

What is the benefit of using containers for me
or my company?

Somebody once said, "...today every company of a certain size has to acknowledge
that they need to be a software company..."." In this sense, a modern bank is a
software company that happens to specialize in the business of finance.



Software runs all businesses, period. As every company becomes a software
company, there is a need to establish a software supply chain. For the
company to remain competitive, its software supply chain must be secure and
efficient. Efficiency can be achieved through thorough automation and
standardization. But in all three areas—security, automation, and
standardization—containers have been shown to shine. Large and well-
known enterprises have reported that when containerizing existing legacy
applications (many call them traditional applications) and establishing a fully
automated software supply chain based on containers, they can reduce the
cost for the maintenance of those mission-critical applications by a factor of
50% to 60%, and they can reduce the time between new releases of these
traditional applications by up to 90%. That being said, the adoption of
container technologies saves these companies a lot of money, and at the same
time, it speeds up the development process and reduces the time to market.

The Moby project

Originally, when Docker (the company) introduced Docker containers,
everything was open source. Docker did not have any commercial products
then. Docker Engine, which the company developed, was a monolithic piece
of software. It contained many logical parts, such as the container runtime, a
network library, a RESTful (REST) API, a command-line interface, and much
more. Other vendors or projects, such as Red Hat or Kubernetes, were using
Docker Engine in their own products, but most of the time, they were only
using part of its functionality. For example, Kubernetes did not use the Docker
network library for Docker Engine but provided its own way of networking.
Red Hat, in turn, did not update Docker Engine frequently and preferred to
apply unofficial patches to older versions of Docker Engine, yet they still
called it Docker Engine.

Out of all these reasons, and many more, the idea emerged that Docker had to
do something to clearly separate Docker's open source part from Docker's
commercial part. Furthermore, the company wanted to prevent competitors
from using and abusing the name Docker for their own gains. This was the
main reason the Moby project was born. It serves as an umbrella for most of
the open source components Docker developed and continues to develop.
These open source projects do not carry the name Docker anymore. The Moby



project provides components used for image management, secret
management, configuration management, and networking and provisioning.
Also, part of the Moby project is special Moby tools that are, for example, used
to assemble components into runnable artifacts. Some components that
technically belong to the Moby project have been donated by Docker to the
Cloud Native Computing Foundation (CNCF) and thus do not appear in the
list of components anymore. The most prominent ones are notary, containerd,
and runc, where the first is used for content trust, and the latter two form the
container runtime.

In the words of Docker, "... Moby is an open framework created by Docker to
assemble specialized container systems without reinventing the wheel. It provides a
""Lego set"" of dozens of standard components and a framework for assembling them
into custom platforms...."

Docker products

In the past, up until 2019, Docker separated its product lines into two
segments. There was the Community Edition (CE), which was closed source
yet completely free, and then there was the Enterprise Edition (EE), which
was also closed source and needed to be licensed yearly. These enterprise
products were backed by 24/7 support and were supported by bug fixes.

In 2019, Docker felt that what they had were two very distinct and different
businesses. Consequently, they split away the EE and sold it to Mirantis.
Docker itself wanted to refocus on developers and provide them with optimal
tools and support to build containerized applications.

Docker Desktop

Part of the Docker offering includes products such as Docker Toolbox and
Docker Desktop, with their editions for macOS, Windows, and Linux. All these
products are mainly targeted at developers. Docker Desktop is an easy-to-
install desktop application that can be used to build, debug, and test
dockerized applications or services on a macOS, Windows, or Linux machine.
Docker Desktop is a complete development environment that is deeply
integrated with the hypervisor framework, network, and filesystem of the
respective underlying operating system. These tools are the fastest and most
reliable ways to run Docker on macOS, Windows, or Linux.



Note

Docker Toolbox has been deprecated and is no longer in active
development. Docker recommends using Docker Desktop instead.

Docker Hub

Docker Hub is the most popular service for finding and sharing container
images. It is possible to create individual, user-specific accounts and
organizational accounts under which Docker images can be uploaded and
shared inside a team, an organization, or with the wider public. Public
accounts are free while private accounts require one of several commercial
licenses. Later in this book, we will use Docker Hub to download existing
Docker images and upload and share our own custom Docker images.

Docker EE

Docker sold its Enterprise Edition (Docker EE) to Mirantis in November 2019
as part of a strategic realignment. Despite pioneering container technology,
Docker, Inc. found itself under financial strain as the container ecosystem
rapidly shifted toward Kubernetes. Docker EE—comprising Universal Control
Plane (UCP), Docker Trusted Registry (DTR), and the enterprise-specific
engine—no longer fitted Docker's evolving focus on developer workflows,
Docker Desktop, and the Docker Hub ecosystem.

By transferring Docker EE to Mirantis, Docker obtained funding and freedom
to concentrate on developer tooling and collaboration, while Mirantis
acquired the enterprise business and its customer base, as well as engineers
and IP. Mirantis continues to build upon Docker EE's core technologies,
integrating them into its own Kubernetes-focused solutions. Meanwhile,
Docker thrives as a primary driver of developer-centric container tooling,
demonstrating how the container market has matured and specialized over
time.

Docker Swarm

Docker Swarm is Docker's native container orchestration feature that
comes integrated with the Docker Engine—it is not a separate
product. It provides a robust and flexible platform for deploying and



managing containerized applications at scale. With Swarm mode
enabled, developers and operators can build, deploy, and operate
distributed applications using the same familiar Docker CLI,
benefitting from built-in features such as load balancing, service
discovery, rolling updates, and secure multi-host networking.

Container architecture

Now, let us discuss how a system that can run Docker containers is designed
at a high level. The following diagram illustrates what a computer on which
Docker has been installed looks like. Note that a computer that has Docker
installed on it is often called a Docker host because it can run or host Docker

containers:
REST API
libcontainerd libnetwork graph plugins
Docker Engine
containerd runc
Container Runtime
Layer Capabilities
Namespaces Control Groups Union filesystem: Other OS5
pid, net, ipc, mnt, ufs cgroups Owerly, AUFS, Device Functionality
Mapper, etc.
Linux Operating System

Figure 1.3 - High-level architecture diagram of Docker Engine
In the preceding diagram, we can see three essential parts:

e Atthe bottom, we have the Linux operating system
¢ In the middle, we have the container runtime
e At the top, we have Docker Engine

Containers are only possible because the Linux OS supplies some primitives,
such as namespaces, control groups, layer capabilities, and more, all of which
are used in a specific way by the container runtime and Docker Engine. Linux



kernel namespaces, such as process ID (pid) namespaces, or network (net)
namespaces, allow Docker to encapsulate or sandbox processes that run
inside the container. Control groups make sure that containers do not suffer
from noisy-neighbor syndrome, where a single application running in a
container can consume most or all the available resources of the whole Docker
host. Control groups allow Docker to limit the resources, such as CPU time or
the amount of RAM, that each container is allocated. The container runtime
on a Docker host consists of containerd and runc. The latter is the low-level
functionality of the container runtime, such as container creation or
management, while containerd, which is based on runc, provides higher-level
functionality, such as image management, networking capabilities, or
extensibility via plugins. Both are open source and have been donated by
Docker to the CNCF. The container runtime is responsible for the whole life
cycle of a container. It pulls a container image (which is the template for a
container) from a registry, if necessary, creates a container from that image,
initializes and runs the container, and eventually stops and removes the
container from the system when asked. Docker Engine provides additional
functionality on top of the container runtime, such as network libraries or
support for plugins. It also provides a REST interface over which all container
operations can be automated. The Docker command-line interface (CLI) that
we will use often in this book is one of the consumers of this REST interface.

What's new in containerization

Although containers have been around for nearly a decade, the ecosystem has
not been standing still. Over the past few years, you've likely seen an
explosion in complementary tools, runtimes, and security features. Not all of
these are strictly "new"—some debuted earlier in beta form—but 2022
onward has been a tipping point, pushing once-experimental ideas firmly into
mainstream adoption. Here's a summary of the standout developments that
have truly gained ground in that timeframe.

Enhanced supply chain security

One of the biggest stories in containerization since 2022 has been the shift to
deeper security. Gone are the days when we simply scanned images after



shipping them. Now, organizations demand full transparency and traceability
from the earliest point in the supply chain. A few highlights are as follows:

e Image signing and verification: Tools such as Notary v2 and Cosign are
moving beyond prototypes and finding real usage in production
pipelines. They let you sign your images cryptographically so that any
downstream user (whether developer, QA engineer, or operator) can be
certain the image hasn't been tampered with along the way. Since 2022,
these signing workflows have become far more common, fueled by high-
profile supply chain attacks that exposed just how vulnerable unverified
images can be.

* SBOM generation: While software bills of materials (SBOMs) were a
talking point back in 2021, they truly landed on the mainstream radar by
mid-2022, especially with developer-friendly tools such as Syft, Anchore,
and a variety of plugins for existing CI/CD solutions. The typical
approach is to generate an SBOM at build time, capturing exactly which
versions of libraries and frameworks went into your container. This
"ingredient list" makes it much easier to react to newly discovered
vulnerabilities—or track down dangerous dependencies such as log4;.

Debugging and operations in Kubernetes

As more enterprises transitioned to Kubernetes at scale, operational
workflows matured. By 2022, one feature in particular (namely, ephemeral
containers) began appearing in everyday cluster operations.

Originally introduced before 2022, ephemeral containers gained real traction
once folks realized how straightforward it is to attach a debugging container
to a Pod already running in production. You can spin up a short-lived
container image with the needed diagnostic tools (think: cURL, netcat,
specialized log scrapers) and run them right alongside your main application
process. By 2022 and into 2023, ephemeral containers cemented their status
as a go-to mechanism for live troubleshooting without stopping or rebuilding
your entire Pod.

Docker Desktop extensions

Since mid-2022, Docker Desktop gained an Extensions Marketplace, allowing
users to integrate third-party tools directly into the Docker Desktop UL While



Docker Desktop has long provided a seamless way to build and run containers
locally, these new extensions push it further:

e Security scanning extensions: Many teams now adopt Docker Desktop
extensions for image scanning (for instance, the Snyk or Trivy
extensions) right as they're building locally. This shortens feedback
loops, catching vulnerabilities before code ever makes it to a shared
repository.

e Multi-service management: Some extensions help you orchestrate and
monitor multiple services, letting you visualize containers or tweak
volumes and networks from a single interface. Because these extensions
are curated on Docker's marketplace, developers can install them with
one click, making for a frictionless setup that even new team members
can handle.

Evolving resource management

Lastly, container engines and orchestrators have kept refining how they
handle resource isolation:

e cgroups v2 adoption: Although cgroups v2 was initially introduced
earlier, full Docker support and stable usage across major Linux distros
were locked in during 2022. Operators now benefit from more precise
accounting of CPU, memory, and I/O usage at scale, which is crucial for
multi-tenant environments. Docker's improved stability with cgroups v2
means that if you're running the latest Linux kernels, you can rely on
better insight and control over container performance.

* Rootless modes (more mature): Running containers as rootless—thus
mitigating some of the biggest security concerns—saw broader real-
world deployments last year. Formerly considered "experimental,”
rootless Docker modes are now stable enough that companies with strict
security requirements are confidently rolling them out in production.
While some features are still limited compared to traditional Docker, the
overall experience for rootless has become smoother and far better
documented.

Where do we go from here?



Altogether, these developments show that the container world no longer
revolves solely around a single Docker Engine or a single orchestrator. Instead,
we have a rapidly evolving toolkit that covers everything from building more
secure images (complete with SBOMs, signed content, and rootless isolation)
to debugging distributed applications in real time (Kubernetes ephemeral
containers). If you're coming from older container setups, you'll notice a
dramatic uptick in built-in security checks, official disclaimers about package
versions, and integrated services that keep watch on every step of your build-
and-run pipeline.

More than ever, containers aren't just a developer convenience. They're
cornerstones of resilient, auditable, and secure systems. As you read on in this
book, you'll see these newer features intersect with our core principles of
Dockerized workflows—speed, consistency, and the power to easily scale up
or shift environments without the legacy overhead. Keep an eye on these tools
and trends, because we're likely to see even tighter integrations and more
advanced capabilities in the very near future.

Summary

In this chapter, we saw how containers dramatically reduce software supply
chain friction while reinforcing overall security—a benefit rooted in the open
source Moby components at Docker's core. We also introduced emerging
trends from 2022 onward, such as enhanced image signing and rootless
operation, to show why containers remain a central force in modern
deployments. In the next chapter, we'll go hands-on with Docker commands,
learning how to run, stop, and inspect containers while exploring their basic
anatomy. This is where you'll begin to see these theoretical concepts take
shape in practical, everyday scenarios. Stay tuned!

Further reading

The following is a list of links that lead to more detailed information regarding
the topics we discussed in this chapter:

e Docker overview: https://docs.docker.com/engine/docker-overview/

e The Moby project: https://mobyproject.org/

e Docker products: https://www.docker.com/get-started
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° I)Ockerl)esktqp:https://www.docker.com/products/docker—desktop/
* Cloud-Native Computing Foundation: https://www.cncf.io/

e containerd — an industry-standard container runtime:
https://containerd.io/

e Mirantis Kubernetes Engine 4:

https://www.mirantis.com/software/mirantis-kubernetes-engine/

e Rootless Docker Documentation:

https://docs.docker.com/engine/security/rootless/

* Kubernetes Ephemeral Containers:
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-
containers/

e Image Signing and Supply Chain Security:
® Notary v2: https://github.com/notaryproject/notaryproject
 Cosign / Sigstore: https://docs.sigstore.dev

® cgroupsv2 in Practice: https://www.kernel.org/doc/html/latest/admin-
guide/cgroup-v2.html

* SBOM Generation Tools:
° Syﬁ:https://github.com/anchore/syft
® CycloneDX: https://cyclonedx.org/

Questions
Please answer the following questions to assess your learning progress:

1. Which statements are correct regarding containers? (Multiple answers
may apply.)
a. A container is essentially the same as a lightweight VM.
b. A container only runs on a Linux host.
c. A container can run exactly one process and no more.

d. The main process in a container always has PID 1inside that
container's namespace.

e. A container is one or more processes encapsulated by Linux
namespaces and restricted by cgroups.
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2. In your own words, by using analogies, explain what a container is.
(Hint: Compare it to a physical shipping container or a standardized way
of packaging.)

3. Why are containers considered game-changers in IT? Name three or four
key reasons. (Think about portability, reduced friction, cloud integration,
immutability, and security.)

4. What does it mean when we claim, "If a container runs on a given
platform, then it runs anywhere?" Give two or three reasons why this is
true.

5. True or false? "Docker containers are only useful for modern greenfield
applications based on microservices." Provide a justification for your
answer.

6. How much do enterprises typically save on maintenance when
containerizing their legacy applications?
a.20%
b.33%
c.50%
d. 75%

7. On which two core Linux concepts are containers based? (Hint: This
includes a method to isolate processes and another to control resource
usage.)

8. Which operating systems currently support Docker Desktop? (Note:
Keep in mind recent developments regarding Docker Desktop for Linux.)

9. Name at least two new containerization features or practices that gained
traction from 2022 onward, and briefly explain why they are important.
(Hint: Consider ephemeral containers for Kubernetes debugging,
rootless Docker, cgroups v2, supply chain security enhancements, and/or
image signing.)

Answers

1. The correct answers are D and E:

o d. Within a container's own namespace, the main process has PID 1.



o e. A container is one or more processes encapsulated by Linux
namespaces and restricted by cgroups.

2. A helpful analogy compares software containers to the standardized
shipping containers used in global trade. Much like physical containers,
software containers provide a uniform packaging mechanism. Once
developers place an application and its dependencies inside the
container, it can be shipped and run anywhere that supports containers,
simplifying logistics and boosting consistency across environments.

3. The following are the reasons why containers are considered
gamechangers in IT:

o They standardize and isolate applications and dependencies,
reducing environment conflicts

o They're portable, enabling the same container to run on-premises,
in the cloud, or in hybrid scenarios

o They encourage rapid, consistent releases because images are
immutable, and builds are developer-driven

o They strengthen security through namespaces, cgroups, and
container-scanning tools

4. A few reasons why the "If a container runs on a given platform, then it
runs anywhere" statement is true are as follows:

o A container bundles all dependencies inside its image, making it
self-contained

o Containers adhere to widely accepted open standards (OCI),
meaning any conforming engine can run them

o They abstract away OS-level quirks, so compatibility issues are
minimal across different hosts or cloud providers

5. This statement is false. Containers are equally beneficial for existing
monolithic or legacy applications. Enterprises have reported over 50%
cost savings and significantly faster release cycles when containerizing
older systems ("lift and shift")—all without rewriting their application
logic.

6. The correct answer is C. 50% or more. In many published success stories,
organizations have seen at least a 50% reduction in maintenance
overhead, along with faster deployment timelines.



7. Containers rely on Linux namespaces (to isolate processes, network,
users, etc.) and cgroups (to control and limit resource usage).

8. Docker Desktop is supported on macOS, Windows, and Linux (with
official Linux support becoming broadly available more recently).

9. Here are a few new containerization features or practices that gained
traction from 2022 onward, and why they matter:

o Kubernetes ephemeral containers: Allow real-time debugging by
attaching short-lived containers to a running Pod, simplifying on-
the-fly troubleshooting

o Rootless Docker modes: Let you run Docker with non-root
privileges, reducing security risks and broadening adoption for
compliance-heavy environments

o cgroups v2 adoption: Provides finer-grained resource isolation and
reporting, making multi-tenant workloads more efficient and
stable

o Image signing with Notary v2 or Cosign: Adds cryptographic
guarantees and traceability to containers, a major step toward
mitigating software supply chain attacks
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Setting Up a Working Environment



Join our book community on Discord:

https://packt.link/mqfS2

In the previous chapter, we learned what Docker containers are and why
they're important. We learned what kinds of problems containers solve in a
modern software supply chain. In this chapter, we are going to prepare our
personal or working environment to work efficiently and effectively with
Docker. We will discuss in detail how to set up an ideal environment for
developers, DevOps, and operators that can be used when working with
Docker containers.

This chapter covers the following topics:
e Distinguishing the major operating systems
e The Linux command shell
e PowerShell for Windows
e Installing and using a package manager
e Installing Git and cloning the code repository
e Choosing and installing a code editor
e Installing Docker Desktop on macOS or Windows
e Using Docker with WSL 2 on Windows
e Installing Docker Toolbox
e Enabling Kubernetes on Docker Desktop
e Installing Podman
e Installing minikube
e Installing kind
After completing this chapter, you will be able to do the following:
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e Setup a professional-grade development environment for containerized
software development on macOS, Windows, or Linux

e Use a package manager, shell, and code editor to configure your local
system for working with containers

e Install and verify Docker, Podman, and Kubernetes tooling such as
minikube and Kind across all supported platforms

e Testyour setup end-to-end to ensure containers and Kubernetes
workloads can be built, run, and orchestrated locally without issues

Technical requirements

For this chapter, you will need a laptop or a workstation with either macOS or
Windows, preferably Windows 11 Professional, installed. You should also have
free internet access to download applications and permission to install those
applications on your laptop. It is also possible to follow along with this book if
you have a Linux distribution as your operating system, such as Ubuntu 24.10
or newer. [ will try my best to indicate where commands and samples differ
significantly from the ones on macOS, which will be my primary platform
throughout this book.

Distinguishing the major operating systems
While Docker is available for all three major platforms—macOS, Windows,

and Linux—each environment has its nuances. Before we dive deeper into the
details of the chapter, let's give a brief summary of all three operating systems:

macOS

e System requirements: Intel-based Macs require macOS 10.14 or above,
while Apple Silicon (M1/M2) chips need macOS 11 or later. Also note that
older versions may need Docker Toolbox.

» Preferred installation: Use the dedicated Docker Desktop for Mac
(https ://www.docker. com/pr‘oducts/docker‘—desktop). It seamlessly
integrates with the macOS hypervisor (HyperKit on Intel, Apple's own
hypervisor framework on Apple Silicon).

e Package manager: Installing additional tools (such as git or jq) is
typically easiest via Homebrew.
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Windows

e System requirements: Windows 10 or 11 Professional or Enterprise
editions support Docker Desktop with WSL2 or Hyper-V. Home editions
can often use WSL2 but may require extra configuration.

 Preferred installation: Docker Desktop for Windows uses Hyper-V or
WSL2 as its underlying virtualization. If you're on Windows Home, you
can still install WSL2 and run Docker Desktop with it.

* Package manager: Chocolatey (or the newer Windows Package Manager,
winget) simplifies installing developer tools.

Linux

e System requirements: A modern Linux distribution (Ubuntu, Debian,
Fedora, CentOS, etc.). Kernel must support cgroups and namespaces. For
older distros, check Docker's official documentation.

 Preferred installation: Install Docker Engine directly from your
distribution's package repositories or use Docker's official repository.
Tools such as minikube may require a specific hypervisor (KVM,
VirtualBox).

* Package manager: Varies by distribution (apt for Debian/Ubuntu, dnf or
yum for Fedora/CentOS, etc.).

The Linux command shell

Docker containers were first developed on Linux for Linux. Hence, it is natural
that the primary command-line tool used to work with Docker, also called a
shell, is a Unix shell; remember, Linux derives from Unix. Most developers use
the Bash shell. On some lightweight Linux distributions, such as Alpine, Bash
is not installed, and consequently, you must use the simpler Bourne shell, just
called sh. Whenever we are working in a Linux environment, such as inside a
container or on a Linux VM, we will use either /bin/bash or /bin/sh, depending
on their availability.

Although Apple's macOS is not a Linux OS, Linux and macOS are both flavors
of Unix and hence support the same set of tools. Among those tools are the

shells. So, when working on macOS, you will probably be using the Bash or
Zsh shell.



In this book, we expect you to be familiar with the most basic scripting
commands in Bash and PowerShell, if you are working on Windows. If you are
an absolute beginner, then we strongly recommend that you familiarize
yourself with the following cheat sheets:

e Linux Command Line Cheat Sheet by Dave Child at http://bit.1ly/2mTQr8l
o PowerShell Basic Cheat Sheet at http://bit.1ly/2EPHxze

PowerShell for Windows

On a Windows computer, laptop, or server, we have multiple command-line
tools available. The most familiar is the command shell. It has been available
on any Windows computer for decades. It is a very simple shell. For more
advanced scripting, Microsoft has developed PowerShell. PowerShell is very
powerful and very popular among engineers working on Windows. Finally, on
Windows 10 or later, we have the so-called Windows Subsystem for Linux,
which allows us to use any Linux tool, such as the Bash or Bourne shells. Apart
from this, other tools also install a Bash shell on Windows, such as the Git
Bash shell. In this book, all commands will use Bash syntax. Most of the
commands also run in PowerShell.

Therefore, we recommend that you either use PowerShell or any other Bash
tool to work with Docker on Windows.

Installing and using a package manager

The easiest way to install software on a Linux, macOS, or Windows laptop is
to use a good package manager. On macOS, most people use Homebrew,
while on Windows, the Windows package manager (winget) or Chocolatey are
good choices. If you're using a Debian-based Linux distribution such as
Ubuntu, then the package manager of choice for most is apt, which is installed
by default.

Installing Homebrew on macOS$S

Homebrew is the most popular package manager on macOS, and it is easy to
use and very versatile. Installing Homebrew on macOS is simple; just follow
the instructions at https://brew.sh/:
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1. In a nutshell, open a new Terminal window and execute the following
command to install Homebrew:

/bin/bash -c¢ "$(curl -fsSL

https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

2. Once the installation has finished, test whether Homebrew is working by
entering brew --version in the Terminal. You should see something like
this:

$ brew --version

Homebrew 4.4.23

3. Now, we are ready to use Homebrew to install tools and utilities. If we,
for example, want to install the iconic Vi text editor (note that this is not

a tool we will use in this book; it serves just as an example), we can do so
like this:

$ brew install vim

This will download and install the editor for you.

Installing Chocolatey on Windows

Chocolatey is a popular package manager for Windows, built on PowerShell.
To install the Chocolatey package manager, please follow these instructions:

1. Open PowerShell as administrator: Press Win + S, type "Powershell", and
select "Run as administrator".
2. Set the execution policy:

a. In the PowerShell window, check the current execution policy by
typing the following:

Get-ExecutionPolicy

b. If it returns Restricted, change it to Al1Signed or Bypass to allow the
installation script to run:

Set-ExecutionPolicy Bypass -Scope Process -Force

3. To install Chocolatey, run the following command in the PowerShell
window:



[System.Net.ServicePointManager]: :SecurityProtocol =
[System.Net.ServicePointManager]: :SecurityProtocol -bor 3072;
iex ((New-Object

System.Net.WebClient).DownloadString('https://community.chocolat
ey.org/install.psl'))

4. After the installation completes, verify that Chocolatey is installed by
typing the following:

5. Check the installed version of Chocolatey by typing the following
command and pressing Enter:

choco --version

You should see an output like this:

2.4.3

This indicates that, at the time of writing, Chocolatey was at version
2.4.3.

6. Try to install an application with Chocolatey, such as Vim:

choco install -y vim

The -y parameter makes sure that the installation happens without
Chocolatey asking for a reconfirmation. As mentioned previously, we
will not use Vim in our exercises; it has only been used as an example.

Note

Once Chocolatey has installed an application, you may need to open a
new PowerShell window to use that application.

Installing Git and cloning the code repository

We will be using Git to clone the sample code accompanying this book from
its GitHub repository. If you already have Git installed on your computer, you
can skip this section:



1. To install Git on macOS, use the following command in a Terminal
window:

$ brew install git

2. To install Git on Windows, open a PowerShell window and use
Chocolatey to install it:

PS> choco install git -y

3. Finally, on your Debian or Ubuntu machine, open a Bash console and
execute the following command:

$ sudo apt update && sudo apt install -y git

4. Once Git has been installed, verify that it is working. On all platforms,
use the following command:

$ git --version

This should output the version of Git that's been installed. On the
author's MacBook Pro M2, the output is as follows:

git version 2.49.0

Note

If you see an older version, then you are probably using the version
that came installed with macOS by default. Use Homebrew to install
the latest version by running $ brew install git.

1. Now that Git is working, we can clone the source code accompanying
this book from GitHub. Execute the following command:

$ cd ~

$ git clone https://github.com/PacktPublishing/The-Ultimate-Docker-Container-Book-Fourth-

Edition.git

This will clone the content of the main branch into your local folder,
~/The-Ultimate-Docker-Container-Book-v4. This folder will now contain



all of the sample solutions for the labs we are going to do together in this
book. Refer to these sample solutions if you get stuck.

Now that we have installed the basics, let's continue with the code editor.

Choosing and installing a code editor

Using a good code editor is essential to working productively with Docker. Of
course, which editor is the best is highly controversial and depends on your
personal preference. A lot of people use Vim, or others such as Emacs, Atom,
Sublime, or Visual Studio Code (VS Code), to name just a few. VS Code is a
completely free and lightweight editor, yet it is very powerful and is available
for macOS, Windows, and Linux. According to Stack Overflow, it is currently
by far the most popular code editor. If you are not yet sold on another editor, I
highly recommend that you give VS Code a try.

But if you already have a favorite code editor, then please continue using it. So
long as you can edit text files, you're good to go. If your editor supports syntax
highlighting for Dockerfiles and JSON and YAML files, then even better. The
only exception will be Chapter 6, Debugging Code Running in a Container. The
examples presented in that chapter will be heavily tailored toward VS Code.

Installing VS Code on macOS$S

Follow these steps for installation:

1. Open a new Terminal window and execute the following command:

S brew install -cask visual-studio-code

2. Once VS Code has been installed successfully, navigate to your home
directory:

3. Now, open VS Code from within this folder:

$ code The-Ultimate-Docker-Container-Book-v4

VS will start and open the The-Ultimate-Docker-Container-Book-v4 folder,
where you just downloaded the repository that contains the source code
for this book, as the working folder.



Note

If you already have VS Code installed without using brew, then the
guide at https://code.visualstudio.com/docs/setup/mac#_launching-

from-the-command-1ine will add code to your PATH.

Use VS Code to explore the code that you can see in the folder you just opened.

Installing VS Code on Windows

Follow these steps for installation:

1. Open a new PowerShell window in admin mode and execute the
following command:

PS> choco install vscode -y

2. Close your PowerShell window and open a new one to make sure VS
Code is in your path.

3. Now, navigate to your home directory:

4. Now, open VS Code from within this folder:

PS> code The-Ultimate-Docker-Container-Book-v4

VS will start and open the The-Ultimate-Docker-Container-Book-v4 folder,
where you just downloaded the repository that contains the source code
for this book, as the working folder.

Use VS Code to explore the code that you can see in the folder you just opened.

Installing VS Code on Linux
Follow these steps for installation. We will use snap for this:
1. First, we need to ensure that Snap is installed. Most Debian and Ubuntu

systems come with Snap pre-installed. To verify, open a terminal and
run the following:

$ snap --version
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2. If Snap isn'tinstalled, you'll need to install it. For Debian-based systems,
use the following:

S
S

sudo apt update

$ sudo apt install snapd

3. Now, to install VS Code via Snap, in your Bash Terminal, execute the
following statement:

$ sudo snap install --classic code

4. The --classic flag ensures VS Code has the necessary permissions to
function correctly.

5. If you're using a Linux distribution that's not based on Debian or
Ubuntu, then please follow the following link for more details:

https://code.visualstudio.com/docs/setup/linux.

6. Once VS Code has been installed successfully, navigate to your home
directory:

7. Now, open Visual Studio Code from within this folder:

$ code The-Ultimate-Docker-Container-Book-v4

VS will start and open the The-Ultimate-Docker-Container-Book-v4 folder,
where you just downloaded the repository that contains the source code
for this book, as the working folder.

Use VS Code to explore the code that you can see in the folder you just opened.

Installing VS Code extensions

Extensions are what make VS Code such a versatile editor. On all three
platforms (macOS, Windows, and Linux), you can install VS Code extensions
the same way:

1. Open a Bash console (or PowerShell in Windows) and execute the
following group of commands to install the most essential extensions
we are going to use in the upcoming examples in this book:

code --install-extension vscjava.vscode-java-pack

code --install-extension ms-dotnettools.csharp
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code --install-extension ms-python.python

code --install-extension ms-azuretools.vscode-docker

code --install-extension eamodio.gitlens

We are installing extensions that enable us to work with Java, C#, .NET,
and Python much more productively. We're also installing an extension
built to enhance our experience with Docker.

2. After the preceding extensions have been installed successfully, restart
VS Code to activate the extensions. You can now click the extensions icon
in the activity pane on the left-hand side of VS Code to see all the
installed extensions.

3. To get a list of all installed extensions in your VS Code, use this
command:

$ code --list-extensions

Currently, Al is eating the world. This is specifically true in software
development and associated fields. In this regard, we cannot miss discussing
the installation of at least one popular Al-powered development
environment.

Installing cursor.ai

As artificial intelligence continues to revolutionize software development,
tools such as cursor.ai have emerged to help streamline your coding
experience. cursor.ai is an intelligent assistant integrated directly into Visual
Studio Code that provides real-time code suggestions, context-aware
completions, and insightful recommendations—all designed to boost your
productivity.

Follow these steps to install cursor.ai:

1. Download the installer: Visit https://www.cursor.com and click
Download. The website detects your operating system and provides the
appropriate installer.

2. Run the installer: Execute the downloaded file and follow the
installation prompts (this process is similar to installing any standard
application on Windows or macOS).
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3. Launch and configure: Once installed, launch Cursor from your Start
menu (Windows) or Applications folder (macOS). On first launch, you'll
be prompted to configure settings (such as keyboard shortcuts,
language, and code base indexing) and sign in with your account.

cursor.ai transforms your coding workflow by integrating advanced Al directly
into a familiar, VS Code-based editor. It offers intelligent code completions,
natural language editing, real-time debugging assistance, and context-aware
code base insights to help you write, refactor, and troubleshoot code more
efficiently. For more details, please visit https://www.cursor.com/.

Now that we have installed a proper code editor, let's focus on Docker and
install Docker Desktop.

Installing Docker Desktop on macOS,
Windows, or Linux

If you are using macOS or have Windows 10 or later installed on your laptop,
then we strongly recommend that you install Docker Desktop. Since early
2022, Docker has also released a version of Docker Desktop for Linux. Docker
Desktop gives you the best experience when working with containers. Follow
these steps to install Docker Desktop for your system:

1. If you're working on Linux, please navigate to
https://docs.docker.com/desktop/install/linux/ and follow the
instructions to install Docker Desktop. When done, skip to the "Testing
Docker Engine" section.

2. No matter whether you're using Windows or macOS, navigate to the
Docker start page at https://www.docker.com/get-started:
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Figure 2.1: Get Started with Docker

3. In the upper-right corner of the view, you will find a Sign In button for
Docker Hub. Click this button even if you don't yet have an account on
Docker Hub, then follow the instructions to either log in or create an
account. It is free, but you need an account to download the software.

4. In the previous screenshot, Figure 2.1, you will find a blue button called
Download Docker Desktop. When you click it, a popup will appear, as
shown in the following screenshot, containing the list of available
downloads:



Download Docker Desktop

Download for Mac - Apple Silicon

Dawnload for Mac - Intel Chip

Download for Windows - AMDG64

Download for Windows - ARMBG4
(BETA)

Download for Linux

Figure 2.2: List of Docker Desktop targets

Select the one that is appropriate for you and observe the installation
package being downloaded.

5. Once the package has been completely downloaded, proceed with the
installation, usually by double-clicking on the download package.

Testing Docker Engine

Now that you have successfully installed Docker Desktop, let's test it. We will
start by running a simple Docker container directly from the command line:



1. Open a Terminal window and execute the following command:

$ docker version

You should see something like this:

) docker version
Client:

Version:

API version:

Go version:

Git commit:
Built:

0S/Arch:
Context:

27.4.0

1.47

gol.22.10

bhde2b89

Sat Dec 7 10:35:43 2024
darwin/armé64
desktop-1linux

Server: Docker Desktop 4.37.2 (179585)

Engine:
Version:
API version:
Go version:
Git commit:
Built:
0S/Arch:
Experimental:
containerd:
Version:
GitCommit:
runc:
Version:
GitCommit:
docker—init:
Version:
GitCommit:

27.4.0

1.47 (minimum version 1.24)
gol.22.10

92a8393

Sat Dec 7 10:38:33 2024
linux/armé4

false

1.7.21
472731909fa34bd7bc9c087e4c27943198351111

1.1.13
v1l.1.13-0-g58aa920

0.19.0
de40ado@

Figure 2.3: Docker version of Docker Desktop

In the preceding output, we can see that it consists of two parts — a client
and a server. Here, the server corresponds to Docker Engine, which is
responsible for hosting and running containers. At the time of writing,
the version of Docker Engine is 27.4.0.

2. To see whether you can run containers, enter the following command
into the Terminal window and hit Enter:

$ docker container run hello-world




If all goes well, your output should look something like the following:

» docker container run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

c9c5fd25albd: Pull complete

Digest: sha256:7elade2dlle2ac7a8c3f768d4166c2defeb@9d2a750b010412b6eal3delefb19
Status: Downloaded newer image for hello—world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

. The Docker client contacted the Docker daemon.

. The Docker daemon pulled the "hello—world" image from the Docker Hub.
(arm64vs)

. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker.com/get—started/

Figure 2.4: Running hello-world on Docker Desktop for macOS

If you read the preceding output carefully, you will have noticed that
Docker didn't find an image called hello-world:latest, and thus decided
to download it from a Docker image registry. Once downloaded, Docker
Engine created a container from the image and ran it. The application
runs inside the container and then outputs all the text, starting with
Hello from Docker!

This is proof that Docker is installed and working correctly on your
machine.

. Let's try another funny test image that's usually used to check the
Docker installation. Run the following command:

$ docker container run rancher/cowsay hello

You should see this or a similar output:



~ docker container run rancher/cowsay Hello
Unable to find image ‘rancher/cowsay:latest' locally
latest: Pulling from rancher/cowsay
cbdbe7a5bc2a: Pull complete
dd@5eb6d8cea: Pull complete
34d5e986f175: Pull complete
13eefdedff68: Pull complete
Digest: sha256:5dab61268bc18daf56febb5a856b618961cd806dbc49a22a636128ca26T@bd94
Status: Downloaded newer image for rancher/cowsay: latest
WARNING: The requested image's platform (linux/amd64) does not match the detectg

Figure 2.5: Running the cowsay image from Rancher

Great — we have confirmed that Docker Engine works on our local computer.
Now, let's make sure the same is true for Docker Desktop.

Testing Docker Desktop

Depending on the operating system you are working with, be it Linux, Mac, or
Windows, you can access the context menu for Docker Desktop in different
areas. In any case, the symbol you are looking for is the little whale carrying

containers. Here is the symbol as found on a Mac:

e Mac: 'You'll find the icon on the right-hand side of your menu bar at the
top of the screen
e Windows: You'll find the icon in the Windows system tray
e Linux: Here are the instructions for Ubuntu. On your distro, it may be different.
To start Docker Desktop for Linux, search for Docker Desktop via the
Applications menu and open it. This will launch the Docker menu icon
and open the Docker dashboard, reporting the status of Docker Desktop.
Once you have located the context menu for Docker Desktop on your
computer, proceed with the following steps:



1. Click the whale icon to display the context menu of Docker Desktop. On
the author's' Mag, it looks like this:

Figure 2.6: Context menu for Docker Desktop



2. From the menu, select Dashboard. The dashboard of Docker Desktop
will open:

& docker.desktop GEEIID Q search ® 40 & @&

¥2 Ask Gordon BETA %
i < Containers cue feedback &

@ Containers View all your running containers and applications. Learn more (3

3 Images

Vol
a olumes Container CPU usage Container memory usage Show charts
4% Builds Na containers are running No containers are running.
§ Models BETA
(ID @ Only show running containers m |
@ Docker Hub
& Docker Scout Name Container ID Image Port(s) Actions
£ Extensions O O upbeat_hofstadt dbdce0a310e5 rancher/co: > o
©  frosty_lalande  e02f87295d69 > o

Selected 1 of 2

&  Engine running [ RAM 0.52 GB CPU 0.10% Disk: 7.77 GB used (limit 58.37 GB} > v vda2

Figure 2.7: Dashboard of Docker Desktop

We can see that the dashboard has multiple tabs, indicated on the left-hand
side of the view. Currently, the Containers tab is active. Consequently, we can
see the list of containers found in our system. Currently, on the author's
system, two have been found. If you inspect carefully, you will see that these
are the containers that we previously created from the hello-world and
rancher/cowsay Docker images. If you click on one of the entries, the details of
this container will be displayed, and you will notice that they both have the
status Exited.

Please take some time and explore this dashboard a bit. Don't worry if you get
lost. It will all become much clearer as we proceed through the various
chapters of this book.

1. When you're done exploring, close the dashboard window.

Note

Closing the dashboard will not stop Docker Desktop. The application,
as well as Docker Engine, will continue to run in the background. If,
for some reason, you want to stop Docker on your system completely,
you can select Quit Docker Desktop from the context menu shown in
Figure 2.6.



Congratulations, you have successfully installed and tested Docker Desktop
on your working computer! Now, let's continue with a few other useful tools.

Using Docker with WSL 2 on Windows

If you're a Windows 10 or 11 user, you can leverage the Windows Subsystem
for Linux version 2 (WSL 2) to enjoy near-native Linux performance for
containers. By default, Docker Desktop for Windows integrates tightly with
WSL 2, eliminating the need for a separate Linux VM. To do so, please follow
these steps:

1. Enable WSL 2: Make sure you have WSL 2 enabled on your system. You
can install or upgrade WSL by following Microsoft's official
documentation, typically involving enabling the Windows Virtual
Machine Platform feature and installing a preferred Linux distribution
from the Microsoft Store. You can find instructions here:

https://learn.microsoft.com/en-us/windows/wsl/install

2. Check Docker Desktop settings: Once WSL 2 is enabled, open Docker
Desktop and navigate to Settings. Under General, confirm that Use the
WSL 2 based engine is switched on. This ensures Docker runs all
containers via WSL 2 rather than Hyper-V or other backends.

3. Run containers natively: With WSL 2 activated, you can run Linux
containers much more efficiently. Docker Desktop automatically
manages resource allocation, filesystem mounting, and networking
integration, giving you a smoother experience—similar to running
Docker natively on a Linux machine.

4. Advantages of WSL 2:

o Improved performance: Faster file I/O and near-native Linux speeds
for Docker containers.

o Better resource management: Lower overhead compared to older
VM-based setups, and simpler memory/CPU balancing.

o Seamless filesystem integration: Access your local Windows files or
your Linux distribution's filesystem without complex sharing
configurations.


https://learn.microsoft.com/en-us/windows/wsl/install

5. Troubleshooting and further details: For deeper insights—such as
customizing multiple WSL distributions or handling edge cases—you
can refer to the Microsoft and Docker documentation. Since Docker
Desktop and WSL 2 are jointly maintained by those teams, any platform-
specific nuances are typically well documented in their respective
guides.

By incorporating WSL 2, you will gain a more integrated and performant
Docker workflow on Windows—without the extra complexity previously
required by Docker Toolbox or dedicated Linux VMs.

Installing Docker Toolbox

Docker Toolbox has been available for developers for a few years. It precedes
newer tools such as Docker Desktop. Toolbox allows a user to work very
elegantly with containers on any macOS or Windows computer. Containers
must run on a Linux host. Neither Windows nor macOS can run containers
natively. Hence, we need to run a Linux VM on our laptop, where we can then
run our containers. Docker Toolbox installs VirtualBox on our laptop, which is
used to run the Linux VMs we need.

Note

Docker Toolbox has been deprecated recently, and thus, we won't be
discussing it further. For certain scenarios, it may still be of interest,
though, which is why we are mentioning it here.

Enabling Kubernetes on Docker Desktop

Docker Desktop comes with integrated support for Kubernetes.

What is Kubernetes?

Kubernetes is a powerful platform for automating the deployment,
scaling, and management of containerized applications. Whether
you're a developer, DevOps engineer, or system administrator,
Kubernetes provides the tools and abstractions you need to manage
your containers and applications in a scalable and efficient manner.



This support is turned off by default. But worry not —it is very easy to enable:

1. Open the dashboard of Docker Desktop.

2. In the top-left corner, select the cog wheel icon. This will open the
settings page.

3. On the left-hand side, select the Kubernetes tab and then click the
Enable Kubernetes toggle:

® o & dockerdesktop

Settings Give feedback @ b4
. Kubernetes
=% General
Enable Kubernetes
IE Resources ® a N .
Start a Kubernetes single or multi-node cluster when starting Docker Desktop.

@ Docker Engine Cluster settings
J_Yg Builders Choose cluster provisioning method

Kubeadm
Kubernetes @ Create a singe-node cluster with kubeadm

Version: v1.32.2
@ Software updates

kind 2 SIGN IN REQUIRED
é} Extensions O Create a cluster containing one or more nodes with kind. Requires the containerd

image store
88 F devel
oo Features in development

(] show system containers (advanced)
Show Kubernetes internal containers when using Docker commands
Seply & et
& Engine running | : RAM 0.49 GB CPU 0.00% Disk: 7.77 GB used (limit 58.37 GB) > v vad2

Figure 2.8: Enabling Kubernetes on Docker Desktop

4. Click the Apply & restart button.
Now, you will have to be patient since Docker will download all the
supporting infrastructure and then start Kubernetes.

Once Docker has restarted, you are ready to use Kubernetes. Please refer to the
Installing minikube section, later in this chapter, on how to test Kubernetes.

Note

Only a single-node cluster is supported. For support for multi-node
setups, you should use kind or minikube, as described later in this
chapter.



Installing Podman

Podman is an open source, daemonless container engine that serves as an
alternative to Docker. It is largely compatible with Docker's CLI, yet it offers
some distinct advantages, such as running containers in rootless mode for
improved security. Please follow these instructions to install Podman on your
system:

Installing Podman on MacOS

To install Podman on a MacOS-based system, please follow these
instructions:

1. Install Podman via Homebrew: In a Terminal, execute the following:

S brew install podman

2. Initialize the Podman machine: To set up a lightweight virtual machine
for running containers, run this:

$ podman machine init

3. Start the Podman machine: Launch your Podman-based container
environment with the following command:

$ podman machine start

4. Verify the installation: Confirm that Podman is installed by checking its
version:

S
S

podman --version

Or, view the system details using the following:

$ podman info

Installing Podman on Windows

On a Windows-based system, use the following instructions:

1. Install Podman using Chocolatey: In a terminal, execute the following:

$ choco install podman -y



2. Initialize the Podman machine: To set up a lightweight virtual machine
for running containers, run this:

S
S

podman machine init

3. Start the Podman machine: Launch your Podman-based container
environment with the following command:

$ podman machine start

4. Verify the installation: Confirm that Podman is installed by checking its
version:

$ podman --version

Or, view the system details using the following:

$ podman info

Installing Podman on Linux

To install Podman on a Debian- or Ubuntu-based Linux machine, please
follow these instructions:

1. Update your package index: Open a terminal and run the following:

$ sudo apt-get update

2. Install Podman: Execute the following command:

$ sudo apt-get install -y podman

3. Verify the installation: Check the installed version to confirm Podman is
ready:

S
S

podman --version

These instructions set up Podman's environment and verify that your system
is ready to run containers. While Podman's rootless, daemonless design offers
improved security and resource efficiency, remember that its integration on
Windows may require additional configuration compared to Docker Desktop.
For more information, please consult the Podman getting started page at
https://podman.io/get-started.


https://podman.io/get-started

After successfully installing Podman, let's compare it with Docker Desktop.
Here are some of the pros and what are potential cons:

Pros of Podman:

e Daemonless architecture: Podman runs without a background daemon,
reducing the attack surface and resource overhead

e Rootless operation: It allows running containers without root privileges,
enhancing security

e Docker CLI compatibility: Most Docker commands work with Podman,
making it easier to switch without a steep learning curve

e Lightweight: Podman typically consumes fewer system resources than
Docker Desktop

Cons of Podman:

e Limited GUI tools: Unlike Docker Desktop, which provides a
comprehensive graphical interface, Podman relies mainly on the CLI
(although third-party GUIs exist)

e Platform support: Docker Desktop offers polished desktop applications
for Windows and macOS, whereas Podman's support on non-Linux
platforms may require additional configuration or workarounds

e Ecosystem and integration: Docker Desktop benefits from a mature
ecosystem with broad third-party integrations and native support in
many development tools

Now that we are able to run containers on our system, we also want to install
some tooling for container orchestration.

Installing minikube

If you are using Docker Desktop, you may not need minikube at all since the
former already provides out-of-the-box support for Kubernetes. If you cannot
use Docker Desktop or, for some reason, you only have access to an older
version of the tool that does not yet support Kubernetes, then it is a good idea
to install minikube. minikube by default provisions a single-node Kubernetes
cluster on your workstation and is accessible through kubectl, which is the
command-line tool used to work with Kubernetes. Note that minikube is also
able to provision multi-node clusters on your system.



Installing minikube on Linux, macOS, and

Windows

To install minikube for Linux, macOS, or Windows, navigate to the following
link: https://kubernetes.io/docs/tasks/tools/install-minikube/.

Follow the instructions carefully. Specifically, do the following:

1. Make sure you have a hypervisor installed, as described in the section
marked inside the box in Figure 2.9:

Documentation / Get Started!

minikube start

minikube is local Kubernetes, focusing on making it easy to learn and develop for

Kubernetes.

All you need is Docker (or similarly compatible) container or a Virtual Machine
environment, and Kubernetes is a single command away: minikube start

What you'll need =

+ 2 CPUs or more
¢ 2GB of free memory
» 20GB of free disk space /./
« Internet connection /
» Container or virtual machine manager, such as: Docker, Hyperkit, Hyper-V, x"'

KWVM, Parallels, Podman, VirtualBox, or VMware Fusion/Workstation

Figure 2.9: Prerequisites for minikube

2. Under 1Installation, select the combination that is valid for you. As an
example, you can see the author's' selection for a MacBook Pro M2 laptop

as the target machine:


https://kubernetes.io/docs/tasks/tools/install-minikube/

1 Installation

Click on the buttons that describe your target platform. For other architectures, see the release
page for a complete list of minikube binaries.

m ‘ Windows

=
Release type m ‘ Beta
Installer ‘ Binary download ‘
type

To install the latest minikube stable release on ARM64 macOS using Homebrew:

Operating

‘ Linux

system

Architecture

If the Homebrew Package Manager is installed:

brew install minikube

If which minikube fails after installation via brew, you may have to remove the old minikube
links and link the newly installed binary:

brew unlink minikube
brew link minikube

Figure 2.10: Selecting the correct installation for minikube

After preparing our system for the installation of minikube and selecting the
appropriate method of installation, we will now demonstrate the actual
installation on a MacBook Pro.

Installing minikube for MacBook Pro M2 using Homebrew

Follow these steps:

1. In a Terminal window, execute the steps shown previously, in Figure
2.10. In the author's' case, this is as follows:

S brew install minikube

2. Test the installation with the following command:

$ minikube version

minikube v

commit: dd5¢ p5451c 91bc4el13d189586ed




3. Now, we're ready to start a cluster. Let's start with the default:

$ minikube start

This will output something like this:

minikube v1.35.0 on Darwin 15 .1 (arm64)
Automatically selected the docker driver
Using Docker Desktop driver with root privileges
Starting "minikube" primary control-plane node in "minikube" cluster
Pulling base image v0.0.46 ...
Downloading Kubernetes v1.32.0 preload ...
> gcr.io/k8s-minikube/k 5 € : 452.84 MiB / 452.84 MiB 100.00% 21.62 M

> preloaded-images-k8s-v18-vl...: 303.97 MiB / 314.92 MiB 96.52% .01 Mi

Note
minikube allows you to define single- and multi-node clusters.

1. The first time you do this, it will take a while since minikube needs to
download all the Kubernetes binaries. When it's done, the last line of the
output on your screen should be something like this:

Done! kubectl is now configured to use "minikube" cluster and "default" namespace by default

Great, we have successfully installed minikube on our system! Let's try to play
with minikube a bit by creating a cluster and running our first application in a
container on it. Don't worry if the following commands do not make a lot of
sense to you at this time. We will discuss everything in this book in the
coming chapters.

Testing minikube and kubecil

Let's start. Please follow these steps carefully:

1. Let's try to access our cluster using kubectl. First, we need to make sure
we have the correct context selected for kubectl. If you have previously
installed Docker Desktop and now minikube, you can use the following
command:

&

S kubectl config get-contexts

You should see something similar to this:



) kubectl config get—contexts
CURRENT  NAME CLUSTER AUTHINFO NAMESPACE

kind-my-cluster kind-my-cluster kind-my-cluster
* minikube minikube minikube default

Figure 2.11: List of contexts for kubectl after installing minikube

The asterisk next to the context called minikube tells us that this is the
current context. Thus, when using kubectl, we will work with the new
cluster created by minikube.

. Now, let's see how many nodes our cluster has with this command:

$ kubectl get nodes

You should get something similar to this. Note that the version shown
could differ in your case:

> kubectl get nodes
NAME STATUS  ROLES AGE VERSION

minikube Ready control-plane 4mls v1.32.0

Figure 2.12: Showing the list of cluster nodes for the minikube cluster

Here, we have a single-node cluster. The node's role is that of the control
plane, which means it is a master node. A typical Kubernetes cluster
consists of a few master nodes and many worker nodes. The version of
Kubernetes we're working with hereis 1.32.e.

. Now, let's try to run something on this cluster. We will use Nginx, a
popular web server, for this. If you have previously cloned the GitHub
repository accompanying this book to the The-Ultimate-Docker-
Container-Book-v4 folder in your home directory (~), then you should find
a folder setup inside this folder that contains a .yaml file that we're going
to use for this test:

1. Open a new Terminal window.

2. Navigate to the The-Ultimate-Docker-Container-Book-4 folder:

$ cd ~/The-Ultimate-Docker-Container-Book-v4

3. Create a pod running Nginx with the following command:

$ kubectl apply -f setup/nginx.yaml




You should see this output:

pod/nginx created

4. We can double-check if the pod is running with kubectl:

$ kubectl get pods

We should see this:

NAME READY STATUS RESTARTS AGE

nginx 1/1 Running 0 29s

This indicates that we have 1 pod with Nginx running and that it
has been restarted O times.

4. To access the Nginx server, we need to expose the application running in
the pod with the following command:

&

$ kubectl expose pod nginx --type=NodePort --port=80

This is the only way can we access Nginx from our laptop — for example,
via a browser. With the preceding command, we're creating a
Kubernetes service, as indicated in the output generated for the

command:

service/nginx exposed

5. We can use kubectl to list all the services defined in our cluster:

$ kubectl get services

We should see something similar to this:

» kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 12m
nginx NodePort 10.99.183.121 <none> 80:30706/TCP  36s

Figure 2.13: List of services on the minikube cluster

In the preceding output, we can see the second service, called nginx,
which we just created. The service is of the NodePort type; port 80 of the
pod had been mapped to port 30706 of the cluster node of our



Kubernetes cluster in minikube. Note that, in your case, the mapped port
may be different!

6. Now, we can use minikube to make a tunnel to our cluster and open a
browser with the correct URL to access the Nginx web server. Use this
command:

The output in your Terminal window will be as follows:

» kubectl get services

NAME TYPE CLUSTER-IP EXTERNAL-IP  PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 12m
nginx NodePort 10.99.183.121 <none> 80:30706/TCP  36s
» minikube service nginx

| NAMESPACE | NAME | TARGET PORT | URL [

e e B

| default | nginx | 80 | http://192.168.49.2:30706

» Starting tunnel for service n

e E e

| NAMESPACE | NAME | TARGET

rmmmm _______l_____________ e

I
| default | nginx | | http://127.0.0.

» Opening service default/nginx in default browser...
Because you are using a Docker driver on darwin, the terminal needs to be open to run it.

Figure 2.14: Opening access to the Kubernetes cluster on minikube

The preceding output shows that minikube created a tunnel for the
Nginx service listening on node port 36706 to port 52431 on the host,
which is on our laptop.

7. A new browser tab should have been opened automatically and should
have navigated you to http://127.0.0.1:52431. You should see the
welcome screen of Nginx:



[ Welcome to nginx!

&, (D 127.0.0.1:64171

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 2.15: Welcome screen of Nginx running on a Kubernetes cluster on minikube

Wonderful, we have successfully run and accessed an Nginx web server
on our little single-node Kubernetes cluster on minikube! Once you are
done playing around, it is time to clean up:

1. Stop the tunnel to the cluster by pressing Ctrl + C inside your Terminal
window.

2. Delete the nginx service and pod on the cluster:

ctl delete service nginx

$ kubectl delete pod nginx

3. Stop the cluster with the following command:

$ minikube stop

You should see this:

> minikube stop
¢ Stopping node "minikube" ...

)

Powering off "minikube" via SSH ...
1 node stopped.

Figure 2.16: Stopping minikube

We have installed minikube and created and tested a single-node Kubernetes
cluster with it. Now, let's demonstrate how we can use minikube to create a
multi-node cluster.



Working with a multi-node minikube cluster

At times, testing with a single-node cluster is not enough. Worry not —
minikube has you covered. Follow these instructions to create a true multi-
node Kubernetes cluster in minikube:

1. If we want to work with a cluster consisting of multiple nodes in
minikube, we can use this command:

$ minikube start --nodes 3 -p demo

The preceding command creates a cluster with three nodes and calls it

demo.

2. Use kubectl to list all your cluster nodes:

$ kubectl get nodes

NAME STATUS ROLES

demo Ready control-plane
demo-m02 Ready <none>

demo-m03 Ready <none>

We have a three-node cluster where the demo node is a master node, and
the two remaining nodes are work nodes.

3. We are not going to go any further with this example here, so use the
following command to stop the cluster:

$ minikube stop -p demo

4. Delete all the clusters on your system with this command:

S minikube delete --all

This will delete the default cluster (called minikube) and the demo
cluster in our case.

With this, we will move on to the next interesting tool that's useful when
working with containers and Kubernetes. You should have this installed and
readily available on your work computer.

Installing kind



kind is another popular tool that can be used to run a multi-node Kubernetes
cluster locally on your machine. It is super easy to install and use. Let's go:

1. Use the appropriate package manager of your platform to install kind.
You can find more detailed information about the installation process
here: https://kind.sigs.k8s.io/docs/user/quick-start/:

1. On MacOS, use Homebrew to install kind with the following
command:

$ brew install kind

2. On a Windows machine, use Chocolatey to do the same with this
command:

$ choco install kind -y

3. Finally, on a Linux machine, you can use the following script to
install kind from its binaries:
$ curl -Lo ./kind https://kind.sigs.k8s.io0/d1/v0.17.0/kind-linux-amdé64

$ chmod +x ./kind

$ sudo mv ./kind /usr/local/bin/kind

2. Once kind has been installed, test it with the following command:

S kind version

If you're on a Mac, it should output something like this:

kind v0.27.0 gol.24.0 darwin/armé64

3. Now, try to create a simple Kubernetes cluster consisting of one master
node and two worker nodes. Use this command to accomplish this:

$ kind create cluster

After some time, you should see this output:


https://kind.sigs.k8s.io/docs/user/quick-start/

» kind create cluster
Creating cluster "kind" ...
Ensuring node image (kindest/node:v1.32.2) H
Preparing nodes &
Writing configuration M
Starting control-plane !
s Installing CNI

Installing StorageClass
Set kubectl context to "kind-kind"
You can now use your cluster with:

kubectl cluster-info ——context kind-kind

Not sure what to do next? @ Check out https://kind.sigs.k8s.io/docs/user/quick-start/

Figure 2.17: Creating a cluster with Kind

4. To verify that a cluster has been created, use this command:

$ kind get clusters

The preceding output shows that there is exactly one cluster called kind,
which is the default name.

5. We can create an additional cluster with a different name using the - -

name parameter, like so:

$ kind create cluster --name demo

6. Listing the clusters will then show this:

$ kind get clusters
demo

kind

This works as expected.
To clean up, run the following command:

$ kind dele

With this, we have installed and tested a second version of a local Kubernetes
orchestrator. Let's continue with some additional exercises involving
minikube and kind.

Testing kind and minikube

Now that we have used kind to create two sample clusters, let's use kubectl to
play with one of the clusters and run the first application on it. We will be
using Nginx for this, similar to what we did with minikube:



1. Let's first create a cluster with minikube and one with kind:

$ minikube start -p minikube-demo

$ kind create cluster --name kind-demo

2. We can now use kubectl to access and work with the clusters we just
created. While creating a cluster, kind also updated the configuration file
for our kubectl. We can double-check this with the following command:

S kubectl config get-contexts

It should produce the following output:

> kubectl config get-contexts
CURRENT  NAME CLUSTER AUTHINFO NAMESPACE

* kind-kind-demo kind-kind-demo kind-kind-demo
minikube-demo minikube-demo minikube-demo default

Figure 2.18: List of contexts defined for kubectl

You can see that the minikube-demo and kind-kind-demo clusters are part of
the list of known clusters and that the kind-kind-demo cluster is the
current context for kubectl.

3. Use the following command to make the minikube-demo cluster your

current cluster if the asterisk indicates that another cluster is current:

$ kubectl config use-context minikube-demo

4. Let's list all the nodes of the minikube-demo cluster:

$ kubectl get nodes

The output should be like this:

> kubectl get nodes
NAME STATUS  ROLES AGE VERSION

minikube-demo  Ready control-plane 7m4s v1.32.0

Figure 2.19: Showing the list of nodes on the minikube cluster

5. Now, let's try to run the first container on this cluster. We will use our
trusted Nginx web server, as we did earlier. Use the following command
to run it:

$ kubectl apply -f setup/nginx.yaml




The output should be as follows:

pod/nginx created

6. To access the Nginx server, we need to do port forwarding using kubectl.
Use this command to do so:

$ kubectl port-forward nginx 8080 80

The output should look like this:

Forwarding from 127.0.0.1:8080 -> 80

Forwarding from [::1]:8080 -> 80

7. Open a new browser tab and navigate to http://localhost:8080; you
should see the welcome screen of Nginx:

[ Welcome to nginx!

() localhost:

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Figure 2.20: Welcome screen of Nginx running on a Kind cluster

8. Once you've finished playing with Nginx, use this command to delete
the pod from the cluster:

$ kubectl delete -f setup/nginx.yaml

9. Before we continue, let's clean up and delete the two clusters we just
created:

&

$ minikube delete -all

$ kind delete cluster --name kind-demo




With this, we have installed all the tools that we will need to successfully
work with containers on our local machine.

Summary

In this chapter, we focused on establishing and configuring a robust working
environment tailored for efficiently managing Docker containers—a setup

that benefits developers, DevOps engineers, and operations professionals
alike.

We began by emphasizing the value of a package manager, a fundamental
tool for quickly installing and maintaining the many applications and utilities
needed in a modern development workflow. Next, we stressed the importance
of using a reliable shell for scripting (such as Bash or PowerShell) along with a
powerful code editor such as Visual Studio Code, which was enhanced with
essential extensions and even Al-powered development tools for smarter
coding.

The chapter then guided you through installing container engines—primarily
Docker for Desktop and Podman—providing the means to run and test
containers natively on your machine. Finally, we delved into local Kubernetes
orchestration by setting up and testing tools such as minikube and kind,
which allowed us to simulate both single-node and multi-node clusters. This
local setup empowered you to experiment with containerized applications in
a controlled environment, laying the groundwork for more complex
orchestration tasks in later chapters.

In the next chapter, we're going to learn important facts about containers. For
example, we will explore how we can run, stop, list, and delete containers, but
more than that, we will also dive deep into the anatomy of containers.

Further reading

Consider the following links for further reading:

® Chocolatey — The Package Manager for Windows: https://chocolatey.org/
o [nstall Docker Toolbox on Windows: https://dockr.1ly/2nuzUku
® Run Docker on Hyper-V with Docker Machine: http://bit.1ly/2HGMPiI


https://chocolatey.org/
https://dockr.ly/2nuZUkU
https://http//bit.ly/2HGMPiI

Developing inside a Container:
https://code.visualstudio.com/docs/remote/containers

Questions

Based on what was covered in this chapter, please answer the following
questions:

1.

Why would we care about installing and using a package manager on
our local computer?

. With Docker Desktop, you can develop and run Linux containers.

a. True
b. False

. Why are good scripting skills (such as Bash or PowerShell) essential for

the productive use of containers?

. Why is it critical to test your Docker installation using commands such

as docker version and docker container run hello-world?

. How do local Kubernetes tools such as minikube and kind benefit

containerized application development?

. What are the pros and cons of using Docker CLI, Docker Desktop, and

Podman for container management?

Answers

The following are the answers to this chapter's questions:

1.

Package managers such as apk, apt, or yum on Linux systems, Homebrew
on MacOS, and Chocolatey on Windows make it easy to automate the
installation of applications, tools, and libraries. It is a much more
repeatable process when an installation happens interactively, and the
user has to click through a series of views.

. The answer is True. Yes, with Docker for Windows, you can develop and

run Linux containers. It is also possible, but not discussed in this book,
to develop and run native Windows containers with this edition of
Docker Desktop. With the macOS and Linux editions, you can only
develop and run Linux containers.


https://code.visualstudio.com/docs/remote/containers

3. Scripts are used to automate processes and hence avoid human errors.
Building, testing, sharing, and running Docker containers are tasks that
should always be automated to increase their reliability and
repeatability.

4. Running these tests confirms that Docker Engine is installed correctly
and operational. The docker version command verifies that both the
client and server components are communicating properly, while
running docker container run hello-world ensures that your system can
download images and execute containers successfully—serving as a
practical check that your entire container environment is set up as
expected.

5. Tools such as minikube and kind allow you to run a local Kubernetes
cluster on your development machine. This enables testing of container
orchestration, deployment strategies, and multi-node configurations
without relying on remote cloud clusters. By simulating real-world
Kubernetes environments locally, developers can experiment,
troubleshoot, and refine their applications before moving to production
setups.

6. Here are the pros and cons of using Docker CLI, Docker Desktop, and
Podman for container management:
Docker CLI:

Pros:
o Provides a direct and lightweight way to manage containers via
commands
o Highly scriptable, which is ideal for automating workflows and
integrating into CI/CD pipelines
Cons:
o Has a steeper learning curve for beginners since it requires
familiarity with command-line operations

o Lacks a graphical interface, which might limit ease of use for visual
management tasks

Docker Desktop:

Pros:



o Offers an integrated, user-friendly GUI that simplifies container
management, including access to dashboards and Kubernetes
integration

o Provides a complete environment (Docker Engine, CLI, and
additional tools) in one package, easing setup on macOS and
Windows

Cons:

o More resource-intensive compared to using just the CLI, which
might impact performance on lower-spec machines

o Limited to certain operating systems (primarily macOS, Windows,
and recently Linux) and may not suit all environments

Podman:
Pros:

o Operates in a daemonless mode and supports rootless container
management, offering enhanced security and lower resource
overhead

o Maintains a high degree of Docker CLI compatibility, easing the
transition for Docker users

Cons:

o Lacks a mature, integrated GUI like Docker Desktop, potentially
making it less accessible for those who prefer visual tools

o Ecosystem and community support might not be as extensive as
Docker's, which can affect available third-party integrations and
tooling

This comparison highlights that the choice among these tools depends
on your specific needs—whether you prioritize simplicity and
automation (Docker CLI), a full-featured graphical experience (Docker
Desktop), or enhanced security and lightweight operation (Podman).
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Mastering Containers



Join our book community on Discord:

https://packt.link/mqfS2

In the previous chapter, you learned how to optimally prepare your working
environment for the productive and frictionless use of Docker. In this chapter,
we are going to get our hands dirty and learn everything that is important to
know when working with containers.

Here are the topics we're going to cover in this chapter:

e Running the first container
e Starting, stopping, and removing containers
e Inspecting containers
e Execinto a running container
e Attaching to a running container
e Retrieving container logs
e The anatomy of containers
After finishing this chapter, you will be able to do the following things:
e Run, stop, and delete a container based on an existing image, such as
Nginx, BusyBox, or Alpine
e Listall containers on the system
e Inspect the metadata of a running or stopped container
e Retrieve the logs produced by an application running inside a container
e Run a process such as /bin/sh in an already-running container
e Attach a terminal to an already-running container

e Explain in your own words, to an interested layperson, the
underpinnings of a container


https://packt.link/mqfS2

e Explain how Linux namespaces provide process isolation and how
cgroups manage resource allocation, forming the foundation of
containerization

Technical requirements

For this chapter, you should have Docker for Desktop installed on your Linux
workstation, macOS, or Windows PC. On macOS, use the Terminal
application, and on Windows, use the PowerShell console or Git Bash, to try
out the commands you will be learning.

Running the first container

Before we start, we want to make sure that Docker is installed correctly on
your system and ready to accept your commands. Open a new terminal
window and type in the following command (note: do not type the $ sign, as it
is a placeholder for your prompt):

$ docker version

If everything works correctly, you should see the version of the Docker client
and server installed on your laptop output in the terminal. At the time of
writing, it looks like this:



» docker version

Client:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:
Context:

27.4.0

1.47

gol.22.10

bde2b89

Sat Dec 7 10:35:43 2024
darwin/armé64
desktop-1linux

Server: Docker Desktop 4.37.2 (179585)

Engine:
Version:

API version:
Go version:
Git commit:
Built:
0S/Arch:

Experimental:

containerd:
Version:
GitCommit:

runc:
Version:
GitCommit:

docker-init:
Version:
GitCommit:

27.4.0

1.47 (minimum version 1.24)
gol.22.10@

92a8393

Sat Dec 7 10:38:33 2024
linux/arme4

false

1.7.21
472731909fa34bd7bc9c087e4c27943f9835f111

1.1.13
v1.1.13-0-g58aa920

0.19.0
ded40ad@

Figure 3.1 - Output of the docker version command

Asyou can see, I have version 27.4.0 installed on the author's MacBook Pro
M2 laptop.

If this doesn't work for you, then something with your installation is not right.
Please make sure that you have followed the instructions in the previous
chapter on how to install Docker Desktop on your system.

So, you're ready to see some action. Please type the following command into
your terminal window and hit the Return key:

$ docker container run alpine echo "Hello World"

When you run the preceding command the first time, you should see an
output in your terminal window like this:



» docker container run alpine echo "Hello World"
Unable to find image ‘'alpine:latest' locally
latest: Pulling from library/alpine

6e771e15690e: Pull complete

Digest: sha256:a8560b36e8b8210634f77d9f7f9efd7ffad63e380b75e2e74aff4511df3ef88¢
Status: Downloaded newer image for alpine:latest

Hello World

Figure 3.2 - Running an Alpine container for the first time

Now that was easy! Let's try to run the very same command again:

$ docker container run alpine echo "Hello World"

The second, third, or nth time you run the preceding command, you should
see only this output in your terminal:

Hello World

Try to reason why the first time you run a command you see a different output
than all of the subsequent times. But don't worry if you can't figure it out; we
will explain the reasons in detail in the following sections of this chapter.

Starting, stopping, and removing containers

You successfully ran a container in the previous section. Now, we want to
investigate in detail what exactly happened and why. Let's look again at the
command we used:

$ docker container run alpine echo "Hello World"

This command contains multiple parts. First and foremost, we have the word
docker. This is the name of the Docker Command-Line Interface (CLI) tool,
which we are using to interact with the Docker engine that is responsible for
running containers. Next, we have the word container, which indicates the
context we are working with, such as container, image, or volume. As we want
to run a container, our context is the word container. Next is the actual
command we want to execute in the given context, which is run.

Let me recap — so far, we have docker container run, which means, "hey
Docker, we want to run a container."

Now we also need to tell Docker which container to run. In this case, this is
the so-called alpine container.



Note

alpine is a minimal Docker image based on Alpine Linux with a
complete package index and is only about 8 MB in size. It is an official
image supported by the Alpine open source project and Docker.

Finally, we need to define what kind of process or task will be executed inside
the container when it is running. In our case, this is the last part of the
command, echo "Hello World".

The following figure may help you to get a better idea of the whole thing:
5 docker container run alpine echo "Hello World!"

I I

the tool: Tt process to run
Docker CLI inside the container

context container image

Figure 3.3 - Docker run command explained

Now that we have understood the various parts of a command to run a
container, let's try to run another container with a different process executed
inside it. Type the following command into your terminal:

$ docker container run quay.io/centos/centos echo "Hello from centos"

You should see output in your terminal window similar to the following:

» docker container run quay.io/centos/centos echo "Hello from centos"
Unable to find image 'quay.io/centos/centos:latest' locally
latest: Pulling from centos/centos

4ff8fa8@ba5d: Pull complete
Digest: sha256:51ca701a9cd3b148b15b421e4bc75515108df15b333c4a61babc185e64744324

Status: Downloaded newer image for quay.io/centos/centos:latest
Hello from centos

Figure 3.4 - Running the echo command inside a CentOS container

What changed is that, this time, the container image we're using is
quay.io/centos/centos and the process we're executing inside the centos
container is echo "Hello from centos".

Note



centos is the official Docker image for CentOS Linux, a community-

supported distribution derived from sources freely provided to the
public by Red Hat for Red Hat Enterprise Linux (RHEL). It has been
deprecated, so we are now using the one from an alternative registry:
quay.io.

Let's analyze the outputin detail. The first line is as follows:

Unable to find image 'quay.io/centos/centos:latest' locally

This tells us that Docker didn't find an image named
quay.iy/centos/centos:latest in the local cache of the system. So, Docker
knows that it has to pull the image from some registry where container
images are stored. By default, your Docker environment is configured so that
images are pulled from Docker Hub at docker. io. But this time, we explicitly
define that we want to pull from the registry at quay. io. This is expressed by
the second line, as follows:

latest: Pulling from centos/centos

The next three lines of output are as follows:

4ff8fa80babd: Pull complete

Digest: sha256:51ca701a9cd3b148b15b421e4bc75515108df15b333c4ablbabcl85e64744324

Status: Downloaded newer image for quay.io/centos/centos:latest

This tells us that Docker has successfully pulled the centos:1latest image from
quay.io. The last lines of the output are generated by the process we ran inside
the container, which is the echo tool in this case. If you have been attentive so
far, then you might have noticed the latest keyword occurring a few times.
Each image has a version (also called tag), and if we don't specify a version
explicitly, then Docker automatically assumes it is latest.

If we run the preceding container again on our system, the first five lines of
the output will be missing since, this time, Docker will find the container
image cached locally and hence won't have to download it first. Try it out and
verify what I just told you.

What exactly happens when you run a container?



When you execute the docker container runcommand, Docker
performs several actions to create and start a new container from the
specified image. First, Docker checks if the requested image is
available locally; if not, it pulls the image from the configured registry.
Once the image is available, Docker creates a new container by
allocating a filesystem and setting up a network interface. It then
assigns an IP address to the container and sets up port mappings as
specified. After configuring the container's environment, Docker
starts the container by executing the specified command. This process
ensures that the application within the container runs in an isolated
and consistent environment.

Worry not, all this and more will be explained in detail in the coming
chapters of this book.

Running a random trivia question container

For the subsequent sections of this chapter, we need a container that runs
continuously in the background and produces some interesting output. That's
why we have chosen an algorithm that produces random trivia questions. The
API that produces free random trivia can be found at https://the-trivia-

api.com.

Now, the goal is to have a process running inside a container that produces a
new random trivia question every 2 seconds and outputs the question to
stpouT. The following script will do exactly that:

while :

do
curl -s https://the-trivia-api.com/v2/questions\?limit\=1 | jgq '.[0].question'
sleep 2

done

If you are using PowerShell, the preceding command can be translated to the
following:

while ($true) {

Invoke-WebRequest -Uri "https://the-trivia-api.com/v2/questions\?limit\=1" -Method GET -
UseBasicParsing |

Select-Object -ExpandProperty Content

ConvertFrom-Json |

Select-Object -ExpandProperty 0

Select-Object -ExpandProperty question


https://the-trivia-api.com/

Start-Sleep -Seconds 2

Note

The ConvertFrom-Json cmdlet requires that the
Microsoft.Powershell.uUtility module be imported. If it's not already
imported, you'll need to run Import-Module
Microsoft.Powershell.Utility before running the script.

Try itin a terminal window. Stop the script by pressing Ctrl + C. The output
should look similar to this:

» while :
do

curl -s https://the-trivia-api.com/v2/questions\?limit\=1 | jq '.[@].question'

sleep 2
done

Figure 3.5 - Output random trivia

Each response is a different trivia question. You may need to install jq first on
your Linux, macOS, or Windows computer. jq is a handy tool often used to
nicely filter and format JSON output, which increases its readability onscreen.
Use your package manager to install jq if needed. On Windows, using
Chocolatey, the command would be as follows:

$ choco install jgq

On a Mac using Homebrew, you would type the following:

S brew install jg

Now, let's run this logic in an alpine container. Since this is not just a simple
command, we want to wrap the preceding scriptin a script file and execute
that one. To make things simpler, I have created a Docker image called



fundamentalsofdocker/trivia that contains all of the necessary logic so that we
can just use it here. Later on, once we have introduced Docker images, we will
analyze this container image further. For the moment, let's just use it as is.
Execute the following command to run the container as a background service.
In Linux, a background service is also called a daemon:

$ docker container run --detach \

--name trivia fundamentalsofdocker/trivia:ed4

Important note

We are using the \ character to allow line breaks in a single logical
command that does not fit on a single line. This is a feature of the
shell script we use. In PowerShell, use the backtick (") instead.

Also note that, on zsh, you may have to press Shift + Enter instead of
only Enter after the \ character to start a new line. Otherwise, you will
get an error.

In the preceding expression, we have used two new command-line
parameters, --detach and --name. Now, --detach tells Docker to run the process
in the container as a Linux daemon.

The --name parameter, in turn, can be used to give the container an explicit
name. In the preceding sample, the name we chose is trivia. If we don't
specify an explicit container name when we run a container, then Docker will
automatically assign the container a random but unique name. This name will
be composed of the name of a famous scientist and an adjective. Such names
could be boring_borg or angry_goldberg. They're quite humorous, the Docker
engineers, aren't they?

Finally, the container we're running is derived from the
fundamentalsofdocker/trivia:ed4 image. Note how we are also using a tag, ed4,
for the container. This tag just tells us that this image was originally created
for the fourth edition of this book.

One important takeaway is that the container name has to be unique on the
system. Let's make sure that the trivia container is up and running:

$ docker container 1ls -1




This should give us something like this:

» docker container ls -1
IMAGE COMMAND CREATED STATUS PORTS NAMES

6ceBcdbabad3  fundamentalsofdocker/trivia:edd "./trivia.sh" 9 seconds ago Up 8 seconds trivia

Figure 3.6 - Details of the last run container

An important part of the preceding output is the STATUS column, which in this
caseisUp 8 seconds. Thatis, the container has been up and running for 8
seconds now.

Don't worry if the previous Docker command is not yet familiar to you; we
will come back to it in the next section.

To complete this section, let's stop and remove the trivia container with the
following command:

$ docker rm --force trivia

The preceding command, while forcefully removing the trivia container from
our system, will just output the name of the container, trivia, in the output.

Now it is time to learn how to list containers running or dangling on our
system.

Listing containers

As we continue to run containers over time, we get a lot of them in our system.
To prepare our system for the next command, let's run a few containers, as
follows:

5 docker container run alpine echo "hello world"

docker c ner run --detach \

$ docker container run --name trivia fundamentalsofdocker/trivia:ed4

Now, to find out what is currently running on our host, we can use the
container 1s command, as follows:

$ docker container ls

This will list all currently running containers. Such a list might look similar to
this:

» docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

41eela®94ccd  quay.io/centos/centos:streamd ''sleep 3600" 33 seconds ago Up 32 seconds optimistic_mcclintock
c6419e1070e3  fundamentalsofdocker/trivia:ed4 "./trivia.sh" About a minute ago Up About a minute trivia




Figure 3.7 - List of all running containers on the system

Note, you can't see the alpine container in the preceding list. This is because
the previous command only lists running containers, and the alpine container
isin an Exited state. Later, we will learn how to also show stopped containers.

By default, Docker outputs seven columns with the following meanings:

Column Description

This is a short version of the unique
ID of the container. It is an SHA-256,
where SHA-256 (Secure Hash
Algorithm 256-bit) is a widely used
Container ID cryptographic hash function that
takes an input and generates a
fixed-size (256-bit) output, known
as a hash. The full ID is 64
characters long.

This is the name of the container
Image image from which this container is
instantiated.

This is the command thatis used to
Command run the main process in the
container.

This is the date and time when the

Created )
container was created.

This is the status of the container
Status (created, restarting, running,
removing, paused, exited, or dead).

This is the list of container ports

Port
orts that have been mapped to the host.




Column Description

This is the name assigned to this
Names container (note: multiple names for
the same container are possible).

Table 3.1 - Description of the columns of the docker container s command

If we want to list not just the currently running containers but all containers
that are defined on our system, then we can use the -a or --all command-line
parameter, as follows:

$ docker container 1ls --all

This will list containers in any state, such as Created, Running, or Exited.

Sometimes, we want to just list the IDs of all containers. For this, we have the
-q Or --quiet parameter:

$ docker container ls --quiet

You might wonder when this is useful. I will show you a command where it is
very helpful right here:

$ docker container rm --force $(docker container ls --all --quiet)

Lean back and take a deep breath. Then, try to find out what the preceding
command does. Don't read any further until you find the answer or give up.

Here is the solution: the preceding command forcefully deletes all containers
that are currently defined on the system, including the stopped ones. The rm
command stands for remove, and it will be explained soon.

There is also a -1 parameter for the list command, thatis, docker container 1s
-1. Try to use the docker help command to find out what the -1 parameter
stands for. You can invoke help for the list command as follows:

$ docker container 1ls --help

Now that you know how to list created, running, or stopped containers on
your system, let's learn how to stop and restart containers.



Stopping and starting containers

Stopping and starting Docker containers are fundamental operations that
allow us to manage the state of our applications effectively. Let's try this out
with the trivia container we used previously:

1. Run the container again with this command:

$ docker container run -d --n

fundamentalsofdocker/trivia:

2. Now, if we want to stop this container, then we can do so by issuing this
command:

$ docker container stop trivia

When you try to stop the trivia container, you will probably notice that it
takes a while until this command is executed. To be precise, it takes about 10
seconds. Why is this the case?

Docker sends a Linux SIGTERM signal to the main process running inside the
container. If the process doesn't react to this signal and terminate itself,
Docker waits for 10 seconds and then sends s1GkILL, which will kill the process
forcefully and terminate the container.

In the preceding command, we have used the name of the container to specify
which container we want to stop. But we could have also used the container
ID instead.

How do we get the ID of a container? There are several ways of doing so. The
manual approach is to list all running containers and find the one that we're
looking for in the list. From there, we copy its ID. A more automated way is to
use some shell scripting and environment variables. If, for example, we want
to get the ID of the trivia container, we can use this expression:

$ export CONTAINER_ ID=$ (docker container 1ls -a \

grep trivia | awk '{print $1}'")

$ echo $CONTAINER ID

The equivalent command in PowerShell would look like this:




dbject -ExpandProperty Line | °
bject { $_ -split ' '

Select-Object -First 1

$ Write-Output $SCONTAINER_ID

Please note the back tricks (") in PowerShell to denote a line break.

Note

We are using the -a (or --all) parameter with the docker container 1s

command to list all containers, even the stopped ones. This is
necessary in this case since we stopped the trivia container a

moment ago.

Now, instead of using the container name, we can use the $CONTAINER_ID
variable in our expression:

$ docker container stop $SCONTAINER ID

Once we have stopped the container, its status changes to Exited.

If a container is stopped, it can be started again using the docker container
start command. Let's do this with our trivia container. It is good to have it
running again, as we'll need it in the subsequent sections of this chapter:

$ docker container start $CDNTAINER_ID

We can also start it by using the name of the container:

$ docker container start trivia

It is now time to discuss what to do with stopped containers that we don't

need anymore.

Removing containers

When we run the docker container 1s -a command, we can see quite a few
containers that are in the Exited status. If we don't need these containers
anymore, then it is a good thing to remove them from memory; otherwise,
they unnecessarily occupy precious resources. The command to remove a
container is as follows:



S docker container rm <container ID>

Here, <container ID> stands for the ID of the container —a SHA-256 code —
that we want to remove. Another way to remove a container is the following:

$ docker container rm <container name>

Here, we use the name of the container.

Challenge
Try to remove one of your exited containers using its ID.

Sometimes, removing a container will not work as it is still running. If we
want to force a removal, no matter what the condition of the container
currently is, we can use the -f or --force command-line parameter:

$ docker container rm <container ID> --force

Now that we have learned how to remove containers from our system, let's
learn how to inspect containers present in the system.

Before you continue, make sure you have removed the trivia container with
the following:

$ docker container rm -f trivia

Inspecting containers

Containers are runtime instances of an image and have a lot of associated
data that characterizes their behavior. The docker container inspect
command provides detailed, low-level information about a container in JSON
format. It reveals everything from network settings and mount points to
environment variables and the exact command used to start the container.
This makes it a powerful tool for debugging and auditing, allowing you to
understand how a container was configured and how it's currently behaving
—without needing to access the container directly.

As usual, when executing the inspect command, we have to provide either the
container ID or the name to identify the container for which we want to



obtain the data. So, let's inspect our sample container. First, we have to run it:

$ docker container run --detach --name trivia \

fundamentalsofdocker/trivia:ed4

Then, use this command to inspect it:

S docker container inspect trivia

The response is a big JSON object full of details. It looks similar to this:
» docker container inspect trivia
[
{

"Id": "f02940a687613706ea3de25aedc954c3cef3a93¢c8ad417478144079d033cde34a",
“"Created": '2025-03-30T716:18:57.415040713Z",
"Path": "./trivia.sh",
”ArgS": [] .
"State": {

"Status": "running",
"Running": true,

"Paused": false,
"Restarting": false,
"0OMKilled": false,
"Dead": false,
"Pid": 2125,
"ExitCode": @,

“"Error": ,
"'StartedAt": '"2025-03-30T16:18:57.468353047Z2",
"FinishedAt": "0001-01-01T00:00:00Z"

Figure 3.8 - Inspecting the trivia container

Note that the preceding screenshot only shows the first part of a much longer
output.

Please take a moment to analyze what you have. You should see information
such as the following:

e The ID of the container
e The creation date and time of the container

e From which image the container is built

Many sections of the output, such asMounts and NetworkSettings, don't make
much sense right now, but we will discuss those in the upcoming chapters of
this book. The data you're seeing here is also named the metadata of a
container. We will be using the inspect command quite often in the remainder
of this book as a source of information.



Sometimes, we need just a tiny bit of the overall information, and to achieve
this, we can use either the grep tool or a filter. The former method does not
always result in the expected answer, so let's look into the latter approach:

$ docker container inspect -f "{{json .State}}" trivia \

[ Jag .

The -f or --filter parameter is used to define the "{{json .State}}" filter. The
filter expression itself uses the Go template syntax. In this example, we only
want to see the state part of the whole output in JSON format. To nicely
format the output, we pipe the result into the jq tool:

> docker container inspect -f "{{json .State}}" trivia \
| iq -

: "running",

: true,

: false,
: false,

: false,
: false,

1 2125,
: 0,

1 "2025-03-30T16:18:57.4683530477",
"0001-01-01T00:00:00Z"

Figure 3.9 - The state node of the inspect output

After we have learned how to retrieve loads of important and useful meta
information about a container, we want to investigate how we can execute it
in a running container.

Exec into a running container

The docker container exec command lets us run a new command inside an
already running container without interrupting its main process. It's ideal for
inspecting the container's state, troubleshooting problems, or performing
administrative tasks—such as checking logs, testing connectivity, or
restarting services. Unlike docker container attach, which we will describe in
the next section, it doesn't connect us to the container's primary process but



starts a separate one, making it a safer and more flexible option for real-time
diagnostics and maintenance.

How can we do this? First, we need to know either the ID or the name of the
container, and then we can define which process we want to run and how we
want it to run. Once again, we use our currently running trivia container, and
we run a shell interactively inside it with the following command:

$ docker container exec -i -t trivia /bin/sh

The output on the screen will be as follows:

The -i (or --interactive) flag in the preceding command signifies that we
want to run the additional process interactively, and -t (or --tty) tells Docker
that we want it to provide us with a TTY (a terminal emulator) for the
command. Finally, the process we run inside the container is /bin/sh.

If we execute the preceding command in our terminal, then we will be
presented with a new prompt, /app #. We're now in a Bourne shell inside the
trivia container. We can easily prove that by, for example, executing the ps

command, which will list all running processes in the context:

/app # ps

The result should look somewhat similar to this:

» docker container exec -i -t trivia /bin/sh
/app # ps
PID USER TIME COMMAND
1 root 0:00 {trivia.sh} /bin/sh ./trivia.sh

237 root 0:00 /bin/sh
350 root 0:00 sleep 2
351 root 0:00 ps

/app # i

Figure 3.10 - Executing into the running trivia container

We can clearly see that the process with PID 1 is the command that we have
defined to run inside the trivia container. The process with PID 1 is also
named the main process.



Exit the container by pressing Ctrl + D.

We not only execute additional processes interactively in a container but also
execute them in an automated way. Please consider the following command:

$ docker container exec trivia ps

The output evidently looks very similar to the preceding output:

> docker container exec trivia ps
PID USER TIME COMMAND
1 root 0:00 {trivia.sh} /bin/sh ./trivia.sh

480 root 0:00 sleep 2
481 root 0:00 ps

Figure 3.11 - List of processes running inside the trivia container

The difference is that we did not use an extra process to run a shell, but
executed the ps command directly. We can even run processes as a daemon
using the -d flag and define environment variables valid inside the container,
using the -e or --env flag variables, as follows:

1. Run the following command to start a shell inside a trivia container and
define an environment variable named My_vaR that is valid inside this

container:

S docker container exec -it \

Hello World" \

trivia /bin/sh

2. You'll find yourself inside the trivia container. Output the content of the
MY_VAR environment variable, as follows:

/app # echo $MY VAR

3. You should see the Hello World output in the terminal, as follows:

Y docker container exec -it \
—e MY_VAR="Hello World" \
trivia /bin/sh

/app # echo $MY_VAR
Hello World

/app # |}




Figure 3.12 - Running a trivia container and defining an environment variable

4. To exit the trivia container, press Ctrl + D:

/app # <CTRL-d>

Before you continue to the next section, make sure to remove the trivia
container.

$ docker container rm --force trivia

Great, we have learned how to execute into a running container and run
additional processes. But there is another important way to work with a
running container.

Attaching to a running container

Attaching to a running Docker container allows us to interact directly with the
process inside it, which is especially useful for debugging, monitoring output,
or manually executing commands in an interactive shell. It gives us a live view
of the container's standard input, output, and error streams—essentially
placing us inside the container as if we were running the application locally.
This can be invaluable when diagnosing issues or exploring container
behavior in real time.

We can use the attach command to attach our terminal's standard input,
output, and error (or any combination of the three) to a running container
using the ID or name of the container. Let's do this for our trivia container:

1. Open a new terminal window.

Tip
You may want to use a terminal other than the integrated terminal of
VS Code for this exercise, as it seems to cause problems with the key

combinations that we are going to use. On Mac, use the Terminal app,
as an example.

1. Run a new instance of the trivia Docker image in interactive mode:

$ docker container run -it \

—--name trivia fundamentalsofdocker/trivia:ed4




2. Open yet another terminal window and use this command to attach it to
the container:

$ docker container attach trivia

In this case, we will see, every two seconds or so, a new quote appearing
in the output.

3. To quit the container without stopping or killing it, we can use the Ctrl +
P and Ctrl + Q key combination. This detaches us from the container
while leaving it running in the background.

4. Back in the first terminal window, hit Ctrl + C to stop the trivia
container.

5. Stop and remove the container forcefully:

$ docker container rm --force trivia

Tip
If you are using the Ctrl + P and Ctrl + Q key combination in a

terminal of VS Code, it won't work as the key combination is
intercepted by VS Code. Use a standalone terminal instead.

Let's run another container — this time, an Nginx web server:

1. Run the Nginx web server as follows:

$ docker run -d --name nginx -p 8080:80 nginx:alpine

Tip

Here, we run the Alpine version of Nginx as a daemon in a container
named nginx. The -p 8080:80 command-line parameter opens port
8e8e on the host (that is, the user's machine) for access to the Nginx
web server running inside the container. Don't worry about the

syntax here, as we will explain this feature in more detail in Chapter
10, Single-Host Networking.

On Windows, you'll need to approve a prompt that Windows Firewall
will pop up. You have to allow Docker Desktop on the firewall.



1. Let's see whether we can access Nginx using the curl tool by running
this command:

$ curl -4 localhost:8080

If all works correctly, you should be greeted by the welcome page of
Nginx:

) curl -4 localhost:8080

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: @ auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>

</head>

<body>

<h1l>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
<a href="http://nginx.org/">nginx.org</a>.<br/>
Commercial support is available at

<a href="http://nginx.com/">nginx.com</a>.</p>

<p><em>Thank you for using nginx.</em></p>
</body>
</html>

Figure 3.13 - Welcome message of the Nginx web server

2. Now, let's attach our terminal to the Nginx container to observe what's
happening:

&

$ docker container attach nginx

3. Once you are attached to the container, you will not see anything at first.
But now, open another terminal, and in this new terminal window,
repeat the curl command a few times, for example, using the following
script:

$ for n in {1..10} do; curl -4 localhost:8080 done;

Or, in PowerShell, use the following:

PS> for (Sn = 1; $n -le 10; $n++) {

curl -4 http://localhost:8080




You should see the logging output of Nginx, which looks similar to this:

container attach nginx

.0, [30/Mar/2025:16:38:42 +0000] "G " HTTP/1.1" 200 vt tcurl/8.7.1" -t
0. [30/1 25: 47 +0000] "G HTTP/1.1" 200 url/8.7.

30/Mar/2025: 27 +0000] "G J HTTP/1.1" 200 " "curl/8.
[30/Mar/2025:16:39: +0060] " J HTTP/1.1" 200 61 "= "curl/8.
[30/Mar/2025: 27 +0000] "GET / HTTP/1.1" 200 615 "-" “"curl/8.7.
[30/Mar/2025: 27 +0000] "G " HTTP/1.1" 200 " "curl/B.7.
[30/Mar/2025: 27 +0000] "G / HTTP/1.1" 200 5 "-" "curl/8.7.
[30/Mar/2025: : +0000] " / HTTP/1.1" 200 61 "=t "curl/8.7.
[30/Mar/2025 : +0000] " / HTTP/1.1" 200 "=t Yeurl/8.7.
[30/Mar/20 27 +0000] " / HTTP/1.1" 200 et teurl/8.7.
[30/Ma : 28 +0000] " " HTTP/1.1" 200 -t "curl/B.7.
[30/Mar/2025:1 28 +0000] ¢ HTTP/1.1" 200 "=t "curl/8.7.
[30/Mar/2025:16:39:28 +0000] " HTTP/1.1" 200 "=t "curl/8.7.

[y

PRPRRRPRR BB R R
R R e e

el el el

Figure 3.14 - Output of Nginx

4. Quit the container by pressing Ctrl + C. This will detach your terminal
and, at the same time, stop the Nginx container.

5. To clean up, remove the Nginx container with the following command:

&

$ docker container rm nginx

In the next section, we're going to learn how to work with container logs.

Retrieving container logs

Itis a best practice for any good application to generate some logging
information that developers and operators alike can use to find out what the
application is doing at a given time, and whether there are any problems to
help to pinpoint the root cause of the issue.

When running inside a container, the application should preferably output
the log items to STDOUT and STDERR and not into a file. If the logging outputis
directed to STDOUT and STDERR, then Docker can collect this information and
keep it ready for consumption by a user or any other external system:

1. Run a trivia container in detach mode:

S docker container run --detach \

--name trivia fundamentalsofdocker/trivia:ed4

Let it run for a minute or so to give it time to generate a few trivia
questions.



2. To access the logs of a given container, we can use the docker container
logs command. If, for example, we want to retrieve the logs of our trivia
container, we can use the following expression:

$ docker container logs trivia

This will retrieve the whole log produced by the application from the
very beginning of its existence.

Note
Stop, wait a second — this is not quite true, what I just said. By default,
Docker uses the so-called json-file logging driver. This driver stores

logging information in a file. If there is a file rolling policy defined,
then docker container logs only retrieves whatis in the currently

active log file and not what is in previous rolled files that might still
be available on the host.

1. If we want to only get a few of the latest entries, we can use the -t or --
tail parameter, as follows:

$ docker container logs --tail 5 trivia

This will retrieve only the last five lines of the log that the process
running inside the container produced.

2. Sometimes, we want to follow the log that is produced by a container.
This is possible when using the -f or --follow parameter. The following
expression will output the last five log items and then follow the log as it
is produced by the containerized process:

$ docker container logs --tail 5 --follow trivia

3. Press Ctrl + C to stop following the logs.

4. Clean up your environment and remove the trivia container with the
following:

$ docker container rm --force trivia

Often, using the default mechanism for container logging is not enough. We
need a different way of logging. This is discussed in the following section.



Logging drivers

Docker includes multiple logging mechanisms to help us to get information
from running containers. These mechanisms are named logging drivers.
Which logging driver is used can be configured at the Docker daemon level.
The default logging driver is json-file. Some of the drivers that are currently
supported natively are as follows:

Driver Description

No log output for the specific

none . .
container is produced.

This is the default driver. The

logging information is stored in
json-file files,

formatted as JSON.

If the journald daemon is running

_ 14 on the host machine, we can use
ourna . . .

] this driver. It forwards logging to

the journald daemon.

If the syslog daemon is running on
the host machine, we can configure
this driver, which will forward the
log messages to the syslog daemon.

syslog

When using this driver, log
messages are written to a Graylog
Extended Log Format (GELF)
endpoint. Popular examples of such
endpoints are Graylog and
Logstash.

gelf




Driver Description

Assuming that the fluentd daemon
fluentd is installed on the host system, this
driver writes log messages to it.

The awslogs logging driver for
Docker is a logging driver that
allows Docker to send log data to
Amazon CloudWatch Logs.

awslogs

The Splunk logging driver for
Docker allows Docker to send log
data to Splunk, a popular platform
for log management and analysis.

splunk

Table 3.2 - List of logging drivers

Note

If you change the logging driver, please be aware that the docker
container logs command is only available for the json-file and
journald drivers. Docker 20.10 and up introduce dual logging, which
uses a local buffer that allows you to use the docker container logs
command for any logging driver.

Using a container-specific logging driver

The logging driver can be set globally in the Docker daemon configuration file.
But we can also define the logging driver on a container-by-container basis. In
the following example, we are running a busybox container and use the --
logdriver parameter to configure the none logging driver:

1. Run an instance of the busybox Docker image and execute a simple script
in it, outputting a hello message three times:

S docker container run --name test -it \

—--log-driver none \




busybox sh -c \

'for N in 1 2 3; do echo "Hello $N"; done'

We should see the following:

Hello 1
Hello 2
Hello 3

2. Now, let's try to get the logs of the preceding container:

The output is as follows:

Error response from daemon: configured logging driver does not support reading

This is to be expected since the none driver does not produce any logging
output.

3. Let's clean up and remove the test container:

$ docker container rm test

To end this section about logging, we want to discuss a somewhat advanced
topic, namely, how to change the default logging driver.

Advanced topic — changing the default
logging driver

Let's change the default logging driver of a Linux host. The easiest way to do
this is on a real Linux host. For this purpose, we're going to use Vagrant with
an Ubuntu image. Vagrant is an open source tool developed by HashiCorp that
is often used to build and maintain portable virtual software development
environments. Please follow these instructions:

1. Open a new terminal window.

2. If you haven't done so before, on your Mac or Windows machine, you
may need to install a hypervisor such as VirtualBox first. If you're using a
Pro version of Windows, you can also use Hyper-V instead:

o Toinstall VirtualBox on a Mac with an Intel CPU, use Homebrew as
follows:



S brew install --cask virtualbox

o On Windows, with Chocolatey, use the following:

$ choco install -y virtualbox

Note

On a Mac with an M1/M2 CPU, at the time of writing this, you
need to install the developer preview of VirtualBox. Please
follow the instructions here:
https://www.virtualbox.org/wiki/Downloads.

3. Install Vagrant on your computer using your package manager, such as
Chocolatey on Windows or Homebrew on Mac. On the author's
MacBook Pro M2, the command looks like this:

$ brew install --cask vagrant

On a Windows machine, the corresponding command would be the
following:

$ choco install -y vagrant

4. Once successfully installed, make sure Vagrant is available with the
following command:

$ vagrant --version

At the time of writing this, Vagrant replies with the following:

Vagrant 2.4.3

5. In your terminal, execute the following command to initialize an Ubuntu
22.04 VM with Vagrant:

$ vagrant init bento/ubuntu-24.04

Here is the generated output:


https://www.virtualbox.org/wiki/Downloads

» vagrant init bento/ubuntu-24.04
A “Vagrantfile® has been placed in this directory. You are now
ready to “vagrant up® your first virtual environment! Please read

the comments in the Vagrantfile as well as documentation on
“vagrantup.com® for more information on using Vagrant.

Figure 3.15 - Initializing a Vagrant VM based on Ubuntu 22.04

Vagrant will create a file called vagrantfile in the current folder.
Optionally, you can use your editor to analyze the content of this file.

6. Now, start this VM using Vagrant:

$ vagrant up

7. Connect from your laptop to the VM using a secure shell (ssh):

$ vagrant ssh

After this, you will find yourself inside the VM and can start working
with Docker inside this VM.

» vagrant ssh
Welcome to Ubuntu 24.04.2 LTS (GNU/Linux 6.8.0-53—-generic aarch64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Sun Mar 30 05:01:56 PM UTC 2025

System load: 0.0

Usage of /: 16.9% of 29.82GB

Memory usage: 5%

Swap usage: 0%

Processes: 129

Users logged in: 0

IPv4 address for eth@: 10.0.2.15

IPv6 address for eth@: fdeo::a00:27ff:fe71:19d8

This system is built by the Bento project by Chef Software
More information can be found at https://github.com/chef/bento

Use of this system is acceptance of the 0S vendor EULA and License Agreements.
vagrant@vagrant:~$ ||

Figure 3.16 - Inside the Vagrant Ubuntu 24.04 box

8. Once inside the Ubuntu VM, install Docker using the following steps:
a. Update the package list:

$ sudo apt-get update



b. Install the required dependencies:

> sudo apt-get update

tall -y ca-certificates \

curl gnupg lsb-release

c. Add Docker's official GPG key:

sudo mkdir -p /etc/apt/keyrings
rl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o

/etc/apt/keyrings/docker.gpg

d. Add a Docker repository:

$ echo \
"deb [arch=$ (dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] \
https://downlo ker.com/linux/ubuntu \

| sudo S tc/apt/sources.list.d/docker.list > /dev/null

e. Update the package lists again:

$ sudo apt update

f. Install Docker Engine and components:

$ sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin

docker-compose-plugin

g. Verify the Docker installation:

$ sudo docker run hello-world

h. Add user to the Docker group:

$ sudo usermod -aG docker S$USER

9. Log out and log in again to apply the changes.

10. Now, we want to edit the Docker daemon configuration file and trigger
the Docker daemon to reload the configuration file thereafter:

a. Navigate to the /etc/docker folder:

$ cd /etc/docker

b. Run vi as follows:



$ sudo vi daemon.json

c. Enter the following content:

{

"Log-driver": "json-log",
"log-opts": {
"max-size": "10m",
"max-file": 3

d. The preceding definition tells the Docker daemon to use the json-
log driver with a maximum log file size of 10 MB before it is rolled,
and the maximum number of log files that can be present on the
system is three before the oldest file gets purged.

e. Save and exit vi by first pressing Esc, then typing :w:q (which means
write and quit), and finally hitting the Enter key.

f. Now, we must send a SIGHUP signal to the Docker daemon so that it
picks up the changes in the configuration file:

$ sudo kill -SIGHUP $ (pidof dockerd)

g. Note that the preceding command only reloads the config file and
does not restart the daemon.

11. Test your configuration by running a few containers and analyzing the
log output.

12. Clean up your system once you are done experimenting with the
following:

$ vagrant box list

$ vagrant destroy [name|id]

Great! The previous section was an advanced topic and showed how you can
change the log driver on a system level. Let's now talk a bit about the anatomy
of containers.

The anatomy of containers

Many people wrongly compare containers to VMs. However, this is a
questionable comparison. Containers are not just lightweight VMs. OK then,



what is the correct description of a container?

Containers are specially encapsulated and secured processes running on the
host system. Containers leverage a lot of features and primitives available in
the Linux operating system. The most important ones are namespaces and
control groups (cgroups for short). All processes running in containers only
share the same Linux kernel of the underlying host operating system. This is
fundamentally different compared with VMs, as each VM contains its own
tull-blown operating system.

The startup times of a typical container can be measured in milliseconds,
while a VM normally needs several seconds to minutes to start up. VMs are
meant to be long-living. It is a primary goal of each operations engineer to
maximize the uptime of their VMs. Contrary to that, containers are meant to
be ephemeral. They come and go relatively quickly.

Let's first get a high-level overview of the architecture that enables us to run
containers.

Architecture

Here, we have an architectural diagram of Docker and how this all fits
together:

REST API

libcontainerd libnetwork graph plugins

Docker Engine

containerd runc

Container Runtime

Layer Capabilities
Namespaces Control Groups Uriion filesystem: Other OS
pid, net, ipc, mnt, ufs cgroups Overly, AUFS, Device Functionality
Mapper, etc.

Linux Operating System

Figure 3.16 - High-level architecture of Docker



In the lower part of the preceding diagram, we have the Linux operating
system with its cgroups, namespaces, and layer capabilities, as well as other
operating system functionality that we do not need to explicitly mention here.
Then, there is an intermediary layer composed of containerd and runc. On top
of all that sits Docker Engine. Docker Engine offers a RESTful interface to the
outside world that can be accessed by any tool, such as the Docker CLI, Docker
Desktop, or Kubernetes, to name just a few.

Let's now describe the main building blocks in a bit more detail.

Namespaces

Linux namespaces were around for years before they were leveraged by
Docker for its containers. A namespace is an abstraction of global resources
such as filesystems, network access, and process trees (also named PID
namespaces) or the system group IDs and user IDs. A Linux system is
initialized with a single instance of each namespace type. After initialization,
additional namespaces can be created or joined.

The Linux namespaces originated in 2002 in the 2.4.19 kernel. In kernel
version 3.8, user namespaces were introduced, and with this, namespaces
were ready to be used by containers.

If we wrap a running process, say, in a filesystem namespace, then this
provides the illusion that the process owns its own complete filesystem. This,
of course, is not true; it is only a virtual filesystem. From the perspective of the
host, the contained process gets a shielded subsection of the overall
filesystem. It is like a filesystem in a filesystem:



FS Namespace 1

Host Filesystem

Process A

Local FS

FS Namespace 2

Process B

Local FS

Figure 3.17 - Namespaces explained
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The same applies to all of the other global resources for which namespaces
exist. The user ID namespace is another example. Now that we have a user
namespace, we can define a jdoe user many times on the system as long asitis
living in its own namespace.

The PID namespace is what keeps processes in one container from seeing or
interacting with processes in another container. A process might have the
apparent PID 1inside a container, but if we examine it from the host system, it
will have an ordinary PID, say, 334:
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docker-containers
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docker-containers-shim
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Figure 3.18 - Process tree on a Docker host

In each namespace, we can run one-to-many processes. That is important
when we talk about containers, which we already experienced when we
executed another process in an already-running container.

Control groups

Linux cgroups are used to limit, manage, and isolate the resource usage of
collections of processes running on a system. Resources are CPU time, system
memory, network bandwidth, or combinations of these resources.

Engineers at Google originally implemented this feature in 2006. The cgroups
functionality was merged into the Linux kernel mainline in kernel version
2.6.24, which was released in January 2008.

Using cgroups, administrators can limit the resources that containers can
consume. With this, we can avoid, for example, the classic noisy neighbor
problem, where a rogue process running in a container consumes all CPU time
or reserves massive amounts of RAM and, as such, starves all the other
processes running on the host, whether they're containerized or not.

Union filesystem



Union filesystem (unionfs) forms the backbone of what is known as container
images. We will discuss container images in detail in the next chapter.
Currently, we want to just understand what unionfs is and how it works a bit
better. unionfs is mainly used on Linux and allows files and directories of
distinct filesystems to be overlaid to form a single coherent filesystem. In this
context, the individual filesystems are called branches. Contents of directories
that have the same path within the merged branches will be seen together in a
single merged directory, within the new virtual filesystem. When merging
branches, the priority between the branches is specified. In that way, when
two branches contain the same file, the one with the higher priority is seen in
the final filesystem.

Container plumbing

The foundation on which Docker Engine is built is formed of two components,
runc and containerd.

Originally, Docker was built in a monolithic way and contained all of the
functionality necessary to run containers. Over time, this became too rigid,
and Docker started to break out parts of the functionality into their own
components. Let's explain in more detail what runc and containerd are.

runc

runc is a lightweight, portable container runtime. It provides full support for
Linux namespaces, as well as native support for all security features available
on Linux, such as SELinux, AppArmor, seccomp, and cgroups.

runC is a tool for spawning and running containers according to the Open
Container Initiative (OCI) specification. It is a formally specified configuration
format governed by the Open Container Project (OCP) under the auspices of
the Linux Foundation.

Containerd

runC is a low-level implementation of a container runtime; containerd builds
on top of it and adds higher-level features, such as image transfer and storage,
container execution, and supervision, as well as network and storage
attachments. With this, it manages the complete life cycle of containers.
Containerd is the reference implementation of the OCI specifications and is by
far the most popular and widely used container runtime.



Containerd was donated to and accepted by the CNCF in 2017. There are
alternative implementations of the OCI specification. Some of them are rkt by
CoreOS, CRI-O by Red Hat, and LXD by Linux Containers. However,
containerd is currently by far the most popular container runtime and is the
default runtime of Kubernetes 1.8 or later and the Docker platform.

This concludes our introduction to the anatomy of containers. Let's recap the
chapter.

Summary

In this chapter, you learned how to work with containers that are based on
existing images. We showed how to run, stop, start, and remove a container.
Then, we inspected the metadata of a container, extracted its logs, and
learned how to run an arbitrary process in an already-running container. Last
but not least, we dug a bit deeper and investigated how containers work and
what features of the underlying Linux operating system they leverage.

In the next chapter, you're going to learn what container images are and how
we can build and share our own custom images. We'll also be discussing the
best practices commonly used when building custom images, such as
minimizing their size and leveraging the image cache. Stay tuned!

Further reading

The following articles give you some more information related to the topics
we discussed in this chapter:
¢ Get started with containers at https://docs.docker.com/get-started/

e Get an overview of Docker container commands at
http://dockr.1ly/2iLBV2I

e Learn aboutisolating containers with a user namespace at
http://dockr.ly/2gmyKdf
e Learn aboutlimiting a container's resources at http://dockr. 1ly/2wgN5Nn

Questions

To assess your learning progress, please answer the following questions:


https://docs.docker.com/get-started/
https://http//dockr.ly/2iLBV2I
https://http//dockr.ly/2gmyKdf
https://http//dockr.ly/2wqN5Nn

1. Which two core Linux features enable containerization by providing
process isolation and resource management?
2. What are the possible states of a Docker container?

3. Which command is used to display all currently running containers on
your Docker host?

4. How can you list only the container IDs of all Docker containers?
5. What s the difference between docker container exec and docker
container attach?

6. How do you run a Docker container in detached mode, and why would
you choose to do so?

Answers
Here are sample answers to the questions presented in this chapter:

1. Linux namespaces and control groups (cgroups) are the two essential
features. Namespaces create isolated environments for processes by
giving each container its own view of the system (for example, process
trees, network interfaces, file systems), while cgroups manage and limit
the resources (CPU, memory, I/O, and so on) that processes within each
container can consume.

2. The possible states of a Docker container are as follows:
o Created: The container that has been created but not yet started
o Restarting: The container is in the process of being restarted
o Running: The container is actively executing its main process

o Paused: All processes within the container have been temporarily
suspended

o Exited: The container has finished running and its main process has
stopped

o Dead: Docker attempted to stop the container, but it could not be
terminated properly

3. We can use the following (or the old, shorter version, docker ps):

$ docker container 1ls




This is used to list all containers that are currently running on our
Docker host. Note that this will not list the stopped containers, for which
you need the extra --all (or -a) parameter.

. To list all IDs of containers, running or stopped, we can use the
following:

$ docker container ls -a -gq

Here, -q stands for output ID only, and -a tells Docker that we want to
see all containers, including stopped ones.

. The difference between docker container exec and docker container
attachis as follows:

o docker container exec: This command starts a new process inside
an already running container. For example, you can launch an
interactive shell (using /bin/sh or /bin/bash) without affecting the
container's main process.

o docker container attach: This command connects your terminal
directly to the main process of the container, attaching to its
standard input, output, and error streams. This is useful for viewing
real-time logs or interacting with the primary application running
in the container.

. To run a container in the background, use the --detach (or -d) flag with
the docker container run command. Here's an example:

docker container run -d --name my container my_ image

Running in detached mode is useful when you want the container to
operate as a background service—such as a web server or database—
without tying up your terminal session.
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Creating and Managing Container
Images
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In the previous chapter, we learned what containers are and how to run, stop,
remove, list, and inspect them. We extracted the logging information of some
containers, ran other processes inside an already running container, and
finally, we dove deep into the anatomy of containers. Whenever we ran a
container, we created it using a container image. In this chapter, we will
tamiliarize ourselves with these container images. We will learn what they
are, how to create them, and how to distribute them.

This chapter will cover the following topics:

e What are Docker images?

Creating Docker images

Lift and shift: containerizing a legacy application

Sharing or shipping images

Supply chain security practices
After completing this chapter, you will be able to do the following:
e Build custom Docker images using Dockerfiles, applying best practices
for efficiency and security
e Create a custom image by interactively changing the container layer and
committing it
e Author a simple Dockerfile using keywords such as FROM, COPY, RUN, CMD,
and ENTRYPOINT to generate a custom image

e Export an existing image using docker image save and importitinto
another Docker host
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e Write a multi-step Dockerfile that minimizes the size of the resulting
image by only including the resulting binaries in the final image

e Create a Dockerfile for an existing legacy application

e Utilize Docker registries to store, share, and version-control images,
demonstrating this by pushing and pulling images from a registry

What are images?

In Linux, everything is a file. The whole operating system is a filesystem with
files and folders stored on the local disk. This is an important fact to
remember when looking at what container images are. As we will see, an
image is a big tarball containing a filesystem. More specifically, it contains a
layered filesystem.

tarball

A tarball (also known as a .tar archive) is a single file that contains

multiple files or directories. It is a common archive format that is used
to distribute software packages and other collections of files. The . tar

archive is usually compressed using gzip or another compression
format to reduce its size. Tarballs are commonly used in Unix-like
operating systems, including Linux and macOS, and can be unpacked
using the tar command.

The layered filesystem

Container images are templates from which containers are created. These
images are not made up of just one monolithic block but are composed of

many layers. The first layer in the image is also called the base layer. We can
see this in the following figure:
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Figure 4.1: The image as a stack of layers

Each layer contains files and folders. Each layer only contains the changes to
the filesystem concerning the underlying layers. Docker uses a Union
filesystem — as discussed in Chapter 3, Mastering Containers — to create a virtual
filesystem out of the set of layers. A storage driver handles the details
regarding the way these layers interact with each other. Various storage



drivers are available that each have advantages and disadvantages in different
situations.

The layers of a container image are all immutable. Immutable means that,
once generated, the layer cannot ever be changed. The only possible operation
affecting the layer is its physical deletion. This immutability of layers is
important because it opens up a tremendous number of opportunities, as we
will see later in this chapter, more precisely in the Dockerfile best practices
section.

In the following figure, we can see what a custom image for a web application,
using Nginx as a web server, could look like:

_
3. Add static files &
Image = :
L ayered FS ~+ | 2. Add Nginx &
1. Alpine Linux
i o

Figure 4.2: Asample custom image based on Alpine and Nginx

Our base layer here consists of the Alpine Linux distribution. Then, on top of
that, we have an Add Nginx layer where Nginx is added on top of Alpine.
Finally, the third layer contains all the files that make up the web application,
such as HTML, CSS, and JavaScript files.

As has been said previously, each image starts with a base image. Typically,
this base image is one of the official images found on Docker Hub, such as a
Linux distro, such as Alpine, Ubuntu, or CentOS. However, it is also possible to
create an image from scratch.

Note

Docker Hub is a public registry for container images. It is a central hub
ideally suited for sharing public container images. The registry can be
found here: https://hub.docker.com/.
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Each layer only contains the delta of changes regarding the previous set of
layers. The content of each layer is mapped to a special folder on the host
system, which is usually a subfolder of /var/1ib/docker/.

Since layers are immutable, they can be cached without ever becoming stale.
This is a big advantage, as we will see in the Dockerfile best practices section.

The writable container layer

As we have discussed, a container image is made of a stack of immutable or
read-only layers. When Docker Engine creates a container from such an
image, it adds a writable container layer on top of this stack of immutable
layers. Our stack now looks as follows:

Container Layer rfw
—
3. Add static files &
Image = ,
L ayered FS ~+ | 2. Add Nginx &
1. Alpine Linux
i a
Container

Figure 4.3: The writable container layer

The container layer is marked as read/write (r/w). Another advantage of the
immutability of image layers is that they can be shared among many
containers created from this image. All that is needed is a thin, writable
container layer for each container, as shown in the following figure:



Container 1 Container 2 Container 3 Container n

3. Add static files

2. Add Mginx

1. Alpine Linux

Image

Figure 4.4: Multiple containers sharing the same image layers

This technique, of course, results in a tremendous reduction in the resources
that are consumed. Furthermore, this helps decrease the loading time of a
container since only a thin container layer has to be created once the image
layers have been loaded into memory, which only happens for the first
container.

Copy-on-write

Docker uses the copy-on-write technique when dealing with images. Copy-
on-write is a strategy for sharing and copying files for maximum efficiency. If
a layer uses a file or folder that is available in one of the lower-lying layers,
then it just uses it. If, on the other hand, a layer wants to modify, say, a file
from a lower-lying layer, then it first copies this file up to the target layer and
then modifies it. In the following figure, we can see what this means:
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Figure 4.5: Docker image using copy-on-write

The second layer wants to modify File 2, which is present in the base layer.
Thus, it copies it up and then modifies it; this is indicated by the apostrophe.
Now, let's say that we're sitting in the top layer of the preceding graphic. This
layer will use File 1 from the base layer and File 2 and File 3 from the second
layer.

Graph drivers

Graph drivers, also known as storage drivers, play a crucial role in Docker's
layered architecture. They enable the Union filesystem, which allows Docker
to efficiently manage and store layered container images.

Essentially, a graph driver merges multiple image layers into a single,
coherent root filesystem. This unified view becomes the root filesystem within
a container's mount namespace, dictating how the container accesses and
interacts with stored data.

Docker uses a flexible, pluggable architecture that supports various graph
drivers. The recommended and most widely used driver today is overlay2, due
to its performance and efficiency advantages. Docker also supports the
original overlay driver, although it has largely been superseded by overlay2.

Now that we understand what images are, we will learn how we can create a
Docker image ourselves.

Creating Docker images

There are three ways to create a new container image on your system. The first
one is by interactively building a container that contains all the additions and



changes you desire, and then committing those changes into a new image.
The second, and most important, way is to use a Dockerfile to describe what's
in the new image, and then build the image using that Dockerfile as a
manifest. Finally, the third way of creating an image is by importing it into the
system from a tarball.

Now, let's look at these three ways in detail.

Interactive image creation

The first way we can create a custom image is by interactively building a
container. That is, we start with a base image that we want to use as a
template and run a container of it interactively. Let's say that this is the Alpine
image:

1. The command to run the container would be as follows:

$ docker container run -it \

——nam nple \

alpine:3.21 /bin/sh

The preceding command runs a container based on the alpine:3.21
image.

2. We run the container interactively with an attached teletypewriter (TTY)
using the -it parameter, name it sample with the --name parameter, and
finally run a shell inside the container using /bin/sh.

In the Terminal window where you ran the preceding command, you
should see something like this:

» docker container run -it \
——name sample \
alpine:3.21 /bin/sh

Unable to find image ‘'alpine:3.21' locally

3.21: Pulling from library/alpine

Digest: sha256:a8560b36e8b8210634177d9f7T9efd7ffad463e380b75e2e74aff4511df3ef88¢
Status: Downloaded newer image for alpine:3.21

/ #1

Figure 4.6: Alpine container in interactive mode

By default, the Alpine container does not have the curl tool installed.
Let's assume we want to create a new custom image that has curl
installed.



3. Inside the container, we can then run the following command:

/ # apk update && apk add curl

The preceding command first updates the Alpine package manager, apk,
and then it installs the curl tool. The output of the preceding command
should look approximately like this:

/ # apk update && apk add curl

fetch https://dl-cdn.alpinelinux.org/alpine/v3.21/main/aarch64/APKINDEX. tar.gz
fetch https://dl-cdn.alpinelinux.org/alpine/v3.21/community/aarch64/APKINDEX. tar.gz
v3.21.3-340-98659f68d269 [https://dl-cdn.alpinelinux.org/alpine/v3.21/main]
v3.21.3-346-gd79468e34c@ [https://dl-cdn.alpinelinux.org/alpine/v3.21/community]
OK: 25249 distinct packages available

(1/9) Installing brotli-libs (1.1.0-r2)

(2/9) Installing c-ares (1.34.5-r@)

(3/9) Installing libunistring (1.2-r@)

(4/9) Installing libidn2 (2.3.7-r@)

(5/9) Installing nghttp2-libs (1.64.0-r@)

(6/9) Installing libpsl (@.21.5-r3)

(7/9) Installing zstd-libs (1.5.6-r2)

(8/9) Installing libcurl (8.12.1-r1)

(9/9) Installing curl (8.12.1-r1)

Executing busybox-1.37.0-r12.trigger

OK: 12 MiB in 24 packages

/ #1

Figure 4.7: Installing curl on Alpine

4. Now, we can indeed use curl, for example, to access Google at https://
google.com, as the following code snippet shows:

/ # curl -I https://google.com

HTTP/2 301

Location: https://www.google.com/

content-type: text/html; charset=UTF-8

content-security-policy-report-only: object-src 'none';base-uri 'self';script-src 'nonce-zrl-heITgnKMzwl8zALLsg' 'strict—dynamic'|
ample' ‘unsafe-eval' 'unsafe-inline' https: http:;report-uri https://csp.withgoogle.com/csp/gws/other-hp
date: Sun, 20 Apr 2025 ©8:15:36

expires: Tue, 20 May 2025 @8

cache-control: public, max-age=2592000

Server: gws

content-length: 220

x-xss-protection: @

x-frame-options: SAMEORIGIN

alt=svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000

! #[]

Figure 4.8: Using curl from within the container

With the preceding command, we have contacted the Google home
page, and with the -1 parameter, we have told curl to only output the
response headers.

5. Once we have finished our customization, we can quit the container by
typing exit at the prompt or hitting Ctrl + D.

6. Now, if we list all containers with the docker container 1s -acommand,
we will see that our sample container has a status of Exited, but still



exists on the system, as shown in the following code block:

$ docker container ls -a | grep sample

7. This should output something similar to this:

» docker container 1s -a | grep sample

8e3e4bdd5cc8 alpine:3.21  "/bin/sh" 8 minutes ago Exited (@) About a minute ago

Figure 4.9: The customized Docker container

8. If we want to see what has changed in our container concerning the base
image, we can use the docker container diff command, as follows:

S docker container diff sample

9. The output should present a list of all modifications done on the
filesystem of the container, as follows:



docker container diff sample
/lib

/lib/apk

/lib/apk/db
/lib/apk/db/installed
/lib/apk/db/scripts.tar
/lib/apk/db/triggers

/root

/root/.ash_history

/usr

/usr/bin

/usr/bin/curl

/usr/1ib
/usr/lib/libbrotlidec.so.1
/usr/1lib/libnghttp2.s0.14
/usr/1lib/libzstd.so.1
/usr/1lib/libbrotlicommon.so.1
/usr/1lib/libbrotlidec.s0.1.1.0
/usr/1ib/1ibpsl.50.5
/usr/1lib/1libcares.so0.2
/usr/lib/1libidn2.s0.0
/usr/1lib/1libunistring.so.5
/usr/lib/1libunistring.so0.5.1.0
/usr/lib/libbrotlienc.so.1
/usr/1lib/libcurl.so.4
/usr/lib/1libcurl.so0.4.8.0

Figure 4.10: Output of the docker diff command (truncated)

)
C
C
C
C
C
C
C
A
C
C
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A

We have shortened the preceding output for better readability. In the
list, A stands for added (file or folder), and ¢ stands for changed. If we



had any deleted files, then those would be prefixed with ab.

10. We can now use the docker container commit command to persist our
modifications and create a new image from them, like this:

$ docker container commit sample my-alpine

11. The output generated by the preceding command on the author's
computer is as follows:

sha256:78alal06bef4le0cbe9d2228d9715aldbb87. ..

12. With the preceding command, we have specified that the new image will
be called my-alpine. The output generated by the preceding command
corresponds to the ID of the newly generated image.

13. We can verify this by listing all the images on our system, as follows:

$ docker image 1ls

14. We can see this image ID as follows:

) docker image 1s

REPOSITORY TAG IMAGE ID CREATED SIZE
my-alpine latest 78alalbbef4l About a minute ago 15.7MB
alpine 3221 8d591b@b7dea 2 months ago 8.17MB
alpine Badlos 8d591bvb7dea J months ago 8.17/MB
alpine latest 8d591b0@b7dea months ago 8.17MB
nginx alpine cedbb67ela7b months ago 49.4MB
busybox latest 82c58a5c5b73 months ago 4.04MB

Figure 4.11: Listing all Docker images

We can see that the image named my-alpine has the expected ID of
78a1ae6bef4l (corresponding to the first part of the full hash code) and
automatically got a tag of latest assigned. This happened since we did
not explicitly define a tag ourselves. In this case, Docker always defaults
to the latest tag.

15. If we want to see how our custom image has been built, we can use the
history command, as follows:

$ docker image history my-alpine

16. This will print a list of the layers our image consists of, as follows:



» docker image history my-alpine
IMAGE CREATED CREATED BY ) 4 = COMMENT
78ala@bbef4l 4 minutes ago /bin/sh 7.57MB

8d591b@b7dea 2 months ago cMD ["/bin/sh"] B buildkit.dockerfile.v@
<missing> 2 months ago ADD alpine-minirootfs-3.21.3-aarch64.tar.gz .. 8.17MB buildkit.dockerfile.v@

Figure 4.12: History of the my-alpine Docker image

The top layer — marked in red — in the preceding output is the one that
we just created by adding the curl package. The other two lines stem
from the original build of the Alpine 3.21 Docker image. It was created
and uploaded 2 months ago.

Now that we have seen how we can interactively create a Docker image, let's
look into how we can do the same declaratively using a Dockerfile.

Using Dockerfiles

Manually creating custom images, as shown in the previous section of this
chapter, is very helpful when doing exploration, creating prototypes, or
authoring feasibility studies. But it has a serious drawback: it is a manual
process and thus is not repeatable or scalable. It is also error-prone, just like
any other task executed manually by humans. There must be a better way.

This is where the so-called Dockerfile comes into play. A Dockerfile is a text
file that, by default, is called Dockerfile. It contains instructions on how to
build a custom container image. It is a declarative way of building images.

Declarative versus imperative

In computer science, in general, and with Docker specifically, you
often use a declarative way of defining a task. You describe the
expected outcome and let the system figure out how to achieve this
goal, rather than giving step-by-step instructions to the system on
how to achieve this desired outcome. The latter is an imperative
approach.

Let's look at a sample Dockerfile, as follows:

FROM python:3.12
RUN mkdir -p /app

WORKDIR /app

COPY ./requirements.txt /app/

RUN pip install -r requirements.txt

CMD ["python", "main.py"]




This is a Dockerfile used to containerize a Python version 3.12 application. As
we can see, the file has six lines, each starting with a keyword such as FRom,
RUN, OT COPY.

Note

Itis a convention to write the keywords in all caps, but thatis not a
must.

Each line of the Dockerfile results in a layer in the resulting image. In the
following figure, the image is drawn upside down compared to the previous
figures in this chapter, showing an image as a stack of layers. Here, the base
layer is shown on top. Don't let yourself be confused by this. In reality, the
base layer is always the lowest in the stack:

@ FROM python:3.12 » Layer 1 - Base Layer a
@ RUN mkdir -p /app » Layer 2 a
@ WORKDIR /app > Layer 3 a
@ COPY ./requirements.txt /app/ Layer 4 a
@ RUN pip install -r requirements.txt Layer 5 a
CMD L th n LL 3 . L)
@ ("pythen®, "main.py"] Layer 6 a
Dockerfile Image

Figure 4.13: The relationship between a Dockerfile and the layers in an image

Now, let's look at the individual keywords in more detail.

The FROM keyword

Every Dockerfile starts with the FrRoM keyword. With it, we define which base
image we want to start building our custom image from. If we want to build
starting with Ubuntu 24.10, for example, we will have the following line in the
Dockerfile:

FROM ubuntu:24.10




On Docker Hub, there are curated or official images for all major Linux distros,
as well as for all important development frameworks or languages, such as
Python, Node.js, Ruby, Go, and many more. Depending on our needs, we
should select the most appropriate base image.

For example, if I want to containerize a Python 3.12 application, I might want
to select the relevant official python:3.12 image.

If we want to start from scratch, we can also use the following statement:

FROM scratch

This is useful in the context of building super-minimal images that only — for
example — contain a single binary: the actual statically linked executable, such
as Hello-World. The scratch image is an empty base image.

FROM scratch, in reality, is a no-op in the Dockerfile, and as such does not
generate a layer in the resulting container image.

The RUN keyword

The next important keyword is RUN. The argument for RUN is any valid Linux
command, such as the following:

RUN yum install -y wget

The preceding command is using the yum CentOS package manager to install
the wget package in the running container. This assumes that our base image
is CentOS or Red Hat Enterprise Linux (RHEL). If we had Ubuntu as our base
image, then the command would look similar to the following:

RUN apt-get update && apt-get install -y wget

It would look like this because Ubuntu uses apt-get as a package manager.

Similarly, we could define a line with RuN, like this:

RUN mkdir -p /app && cd /app

We could also do this:

RUN tar -xJC /usr/src/python --strip-components=1 \

-f python.tar.xz




Here, the former creates an /app folder in the container and navigates to it,
and the latter un-tars a file to a given location. It is completely fine, and even
recommended, for you to format a Linux command using more than one
physical line, such as this:

RUN apt-get update \
jet install -y --no-install-recommends \
rtificates \
expatl \
1libffi6 \
libgdbm3 \

libreadline7 \

libsqglite3-0 \

libssll.1 \

&& rm -rf /var/lib/apt/lists/*

If we use more than one line, we need to put a backslash (\) at the end of the
lines to indicate to the shell that the command continues on the next line.

Tip
Try to find out what the preceding command does.

The COPY and ADD keywords

The copy and ADD keywords are very important since, in the end, we want to
add some content to an existing base image to make it a custom image. Most
of the time, these are a few source files of, say, a web application, or a few
binaries of a compiled application.

These two keywords are used to copy files and folders from the host into the
image that we're building. The two keywords are very similar, with the
exception that the ADD keyword also lets us copy and unpack TAr files, and
provides a URL as a source for the files and folders to copy.

Let's look at a few examples of how these two keywords can be used, as
follows:

COPY . /app

COPY ./web /app/web

COPY sample.txt /data/my-sample.txt
ADD sample.tar /app/bin/

ADD http://example.com/sample.txt /data/



In the preceding lines of code, the following applies:

e The firstline copies all files and folders from the current directory
recursively to the app folder inside the container image
e The second line copies everything in the web subfolder to the target
folder, /app/web
e The third line copies a single file, sample.txt, into the target folder, /data,
and at the same time, renames it my-sample.txt
e The fourth statement unpacks the sample.tar file into the target folder,
/app/bin
* Finally, the last statement copies the remote file, sample.txt, into the
target file, /data
Wildcards are allowed in the source path. For example, the following
statement copies all files starting with sample to the mydir folder inside the
image:

COPY ./sample* /mydir/

From a security perspective, it is important to know that, by default, all files
and folders inside the image will have a user ID (UID) and a group ID (GID) of
0. The good thing is that for both ADD and copy, we can change the ownership
that the files will have inside the image using the optional --chown flag, as
follows:

ADD --chown=11:22 ./data/web* /app/data/

The preceding statement will copy all files starting with web and put them into
the /app/data folder in the image, and at the same time assign user 11 and
group 22 to these files.

Instead of numbers, we could also use names for the user and group, but then
these entities would have to be already defined in the root filesystem of the
image at /etc/passwd and /etc/group, respectively; otherwise, the build of the
image would fail.

The WORKDIR keyword

The WORKDIR keyword defines the working directory or context that is used
when a container is run from our custom image. So, if  want to set the context



to the /app/bin folder inside the image, my expression in the Dockerfile would
have to look as follows:

WORKDIR /app/bin

All activity that happens inside the image after the preceding line will use this
directory as the working directory. It is very important to note that the
following two snippets from a Dockerfile are not the same:

RUN cd /app/bin

RUN touch sample.txt

Compare the preceding code with the following code:

WORKDIR /app/bin

RUN touch sample.txt

The former will create the file in the root of the image filesystem, while the
latter will create the file at the expected location in the /app/bin folder. Only
the WORKDIR keyword sets the context across the layers of the image. The cd
command alone is not persisted across layers.

Note

Itis completely fine to change the current working directory multiple
times in a Dockerfile.

The CMD and ENTRYPOINT keywords

The cMD and ENTRYPOINT keywords are special. While all other keywords
defined for a Dockerfile are executed at the time the image is built by the
Docker builder, these two are definitions of what will happen when a
container is started from the image we define. When the container runtime
starts a container, it needs to know what the process or application will be
that has to run inside that container. That is exactly what cMD and ENTRYPOINT
are used for — to tell Docker what the start process is and how to start that
process.

Now, the differences between cMD and ENTRYPOINT are subtle, and honestly,
most users don't fully understand them or use them in the intended way.
Luckily, in most cases, this is not a problem, and the container will run



anyway; it's just that handling them is not always as straightforward as it
could be.

To better understand how to use these two keywords, let's analyze what a
typical Linux command or expression looks like. Let's take the ping utility as
an example, as follows:

$ ping -c 3 8.8.8.8

In the preceding expression, ping is the command, and -c 3 8.8.8.8 are the
parameters of this command. Let's look at another expression here:

$ wget -O - http://example.com/downloads/script.sh

Again, in the preceding expression, wget is the command, and -0 -
http://example.com/downloads/script.sh are the parameters.

Now that we have dealt with this, we can get back to cMD and ENTRYPOINT.
ENTRYPOINT is used to define the command of the expression, while cMD is used
to define the parameters for the command. Thus, a Dockerfile using Alpine as

the base image and defining ping as the process to run in the container could
look like this:

FROM alpine 21

RUN apk upc && apk add curl

ENTRYPOINT

CMD ["-c","3","8.8.8.8"

For both ENTRYPOINT and cMD, the values are formatted as a JSON array of
strings, where the individual items correspond to the tokens of the expression
that are separated by whitespace. This is the preferred way of defining cMp and
ENTRYPOINT. It is also called the exec form.

Alternatively, we can use what's called the shell form, as shown here:

CMD command paraml param2

Note

You can find the preceding Dockerfile in the sample code for Chapter
04, subfolder solutions/pinger.



We can now build an image called pinger from the preceding Dockerfile, as
follows:

$ docker image build -t pinger .

Here is the output generated by the preceding command:

) docker image build -t pinger .
[+] Building 1.6s (6/6) FINISHED docker:desktop-Llinux

What's next:
View a summary of image vulnerabilities and recommendations -

Figure 4.14: Building the pinger Docker image

Then, we can run a container from the pinger image we just created, like this:

$ docker container run --rm -it pinger

> docker container run —rm -it pinger

PING 8.8.8.8 (8.8.8.8): 56 data bytes

64 bytes from 8.8.8.8: seq=0 ttl=63 time=26.418 ms
64 bytes from 8.8.8.8: seq=1 tt1=63 time=15.276 ms
64 bytes from 8.8.8.8: seq=2 tt1=63 time=15.186 ms

-—— 8.8.8.8 ping statistics ——-
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 15.186/18.960/26.418 ms

Figure 4.15: Output of the pinger container

In the preceding command, we are using the --rm parameter, which defines
that the container is automatically removed once the applications inside the
container end.

The beauty of this is that we can now override the CMD part that we have
defined in the Dockerfile (remember, it was ["-c", "3","8.8.8.8"]) when we
create a new container by adding the new values at the end of the docker
container run expression, like this:

$ docker container run --rm -it pinger -w 5 127.0.0.1




This will cause the container to ping the loopback IP address (127.0.0.1) for 5
seconds.

If we want to override what's defined in ENTRYPOINT in the Dockerfile, we need
to use the --entrypoint parameter in the docker container run expression.
Let's say we want to execute a shell (ash for Alpine shell) in the container
instead of the ping command. We could do so by using the following
command:

$ docker container run --rm -it --entrypoint ash pinger

We will then find ourselves inside the container. Type exit or press Ctrl + D to
leave the container.

As I already mentioned, we do not necessarily have to follow best practices
and define the command through ENTRYPOINT and the parameters through cmp;
instead, we can enter the whole expression as a value of cMD and it will work,
as shown in the following code block:

FROM alpine:3.21

CMD wget -O - http://www.google.com

Here,  have even used the shell form to define the CMD. But what happens in
this situation if ENTRYPOINT is undefined? If you leave ENTRYPOINT undefined,
then it will have the default value of /bin/sh -c, and whatever the value of cMp
is will be passed as a string to the shell command. The preceding definition
would thereby result in entering the following code to run the process inside
the container:

/bin/sh -c "wget -0 - http://www.google.com"

Consequently, /bin/sh is the main process running inside the container, and it
will start a new child process to run the wget utility.

A complex Dockerfile

So far, we have discussed the most important keywords commonly used in
Dockerfiles. Now, let's look at a realistic and somewhat complex example of a
Dockerfile. Those of you who are interested might note that it looks very
similar to the first Dockerfile that we presented in this chapter. Here is its
content:



FROM node:23-bookworm

RUN mkdir -p /app

WORKDIR /app

COPY package.json /app/
RUN npm install

COPY . /app

ENTRYPOINT ["npm"]

CMD ["start"]

OK, so what is happening here? This is a Dockerfile that is used to build an
image for a Node.js application; we can deduce this from the fact that the
node:23-bookworm base image is used. Then, the second line is an instruction to
create an /app folder in the filesystem of the image. The third line defines the
working directory or context in the image to be this new /app folder. Then, on
line four, we copy a package. json file into the /app folder inside the image.
After this, on line five, we execute the npm install command inside the
container; remember, our context is the /app folder, so npm will find the
package.json file there that we copied on line four.

Once all the Node.js dependencies have been installed, we copy the rest of the
application files from the current folder of the host into the /app folder of the
image.

Finally, in the last two lines, we define what the startup command will be

when a container is run from this image. In our case, it is npm start, which will
start the Node.js application.

Note

You'll find the preceding Dockerfile and a trivial Node.js application in
the sample code for Chapter 4, subfolder solutions/node-sample.

Building an image
Let's look at a concrete example and build a simple Docker image, as follows:

1. Navigate to the sample code repository. Normally, this should be located
in your home folder:

$ cd ~/The-Ultimate-Docker-Container-Book-Fourth-Edition




2. If it doesn't already exist, create a new subfolder for Chapter 4 and
navigate to it:

$ mkdir chapter-04 && cd chapter-04

3. In the preceding folder, create a sample-1 subfolder and navigate to it,

like this:

$ mkdir sample-1 && cd sample-1

4. Use your favorite editor to create a file called bockerfile inside this
sample folder, with the following content:

FROM ubuntu:25.04

RUN apt-get update && apt-get install -y wget

5. Save the file and exit your editor.

6. Back in the Terminal window, we can now build a new container image
using the preceding Dockerfile as a manifest or construction plan, like
this:

$ docker image build -t my-ubuntu .

Please note that there is a period (.) at the end of the preceding
command. The following screenshot shows the command in action:

docker image build -t my-ubuntu .
[+] Building 1@.8s (6/6) FINISHED docker:desktop-linux

What's next:
View a summary of image vulnerabilities and recommendations -

Figure 4.16: Building our first custom image from Ubuntu 25.04

The previous command means that the Docker builder is creating a new
image called my-ubuntu using the Dockerfile that is present in the current
directory. Here, the period at the end of the command specifies the



current directory. We could also write the preceding command as
follows, with the same result:

$ docker image build -t my-ubuntu -f Dockerfile .

Here, we can omit the -f parameter since the builder assumes that the
Dockerfile is called Dockerfile. We only ever need the -f parameter if our
Dockerfile has a different name or is not located in the current directory.

Let's analyze the output shown in Figure 4.16. This output is created by the
Docker build kit:

1. First, we have the following line:

[+] Building 10.8s (6/6) FINISHED

This line is generated at the end of the build process, although it appears
as the first line. It tells us that the building took approximately 11
seconds and was executed in 6 steps.

2. Now, let's skip the next few lines until we reach this one:

=> [1/2] FROM docker.io/library/ubuntu:25.04@sha256...

This line tells us which line of the Dockerfile the builder is currently
executing (1 of 2). We can see that this is the FROM ubuntu:25.04
statement in our Dockerfile. This is the declaration of the base image, on
top of which we want to build our custom image. What the builder then
does is pull this image from Docker Hub if it is not already available in
the local cache.

3. Now, follow the next step. I have shortened it even more than the
preceding one to concentrate on the essential part:

=> [2/2] RUN apt-get update && apt-get install -y wget

This is our second line in the Dockerfile, where we want to use the apt-
get package manager to install the wget utility.

4. The last few lines are as follows:

orting to image

exporting layers




> => writing image sha256:df997dé6clfb...

> => naming to docker.io/library/my-ubuntu.

5. Here, the builder finalizes building the image and provides the image
with the sha256 code of df997d6c1fb. ...
This tells us that the resulting custom image has been given an ID of
df997d6c1fb. .. and has been tagged with the name my-ubuntu:latest.

Now that we have analyzed how the build process of a Docker image works
and what steps are involved, let's talk about how to further improve this by
introducing multi-step builds.

Working with multi-step builds

To demonstrate why a Dockerfile with multiple build steps is useful, let's
make an example Dockerfile. Let's take a Hello World application written in C:

1. Open a new Terminal window and navigate to this chapter's folder:

$ cd The-Ultimate-Docker-Container-Book-Fourth-Edition/chapter-04

2. Create a new folder called multi-step-build in your chapter folder:

$ mkdir multi-step-build

3. Open VS Code for this folder:

$ code multi-step-build

4. Create a file called hello. c in this folder and add the following code to it:

#include <stdio.h>
int main (void)
{
printf ("Hello, world!\n");

return 0;

5. Now, we want to containerize this application and write a Dockerfile in
the same folder with this content:

FROM alpine:3
RUN apk upd
apk add --update alpine-sdk

RUN mkdir /app

WORKDIR /app




COPY . /app

RUN mkdir bin
RUN gcc -Wall hello.c -o bin/hello

ENTRYPOINT ["/app/bin/hello"]

6. Next, let's build this image:

$ docker image build -t hello-world .

This gives us a fairly long output since the builder must install the Alpine
Software Development Kit (SDK), which, among other tools, contains
the C++ compiler we need to build the application.

» docker image build -t hello-world .
[+] Building 11.1s (12/12) FINISHED docker:desktop-1linux

=> WARN: JSONArgsRecommended:'JSON arguments recommended for CMD to prevent unintended behavior re @.0s

1 warning found (use docker ——debug to expand):
— JSONArgsRecommended: JSON arguments recommended for CMD to prevent unintended behavior related to 0S signals (line 9)

What's next:
View a summary of image vulnerabilities and recommendations -

Figure 4.17: Building the Docker image for the C application

7. Once the build is done, we can list the image and see its size that's been
shown, as follows:

r image ls | grep hello-world

In the author's case, the output is as follows:

> docker image ls | grep hello-world

latest la@l5fabefdc 3 minutes ago

Figure 4.18: Size of the unoptimized Docker image

With a size of 260 MB, the resulting image is way too big. In the end, itisjust a
Hello World application. The reason for it being so big is that the image not
only contains the Hello World binary but also all the tools to compile and link
the application from the source code. But this is not desirable when running



the application, say, in production. Ideally, we only want to have the resulting
binary in the image and not a whole SDK.

It is precisely for this reason that we should define Dockerfiles as multi-stage.
We have some stages that are used to build the final artifacts, and then a final
stage, where we use the minimal necessary base image and copy the artifacts
into it. This results in very small Docker images. Let's do this:

1. Create a new Dockerfile in your folder called Dockerfile.multi-step with
this content:

FROM alpine:3.21 AS build

RUN apk upda & \

apk add --update alpine-sdk
RUN mkdir /app
WORKDIR /app
COPY . /app
RUN mkdir bin
# Compile staticall time has no dependen

RUN gcc -static -02 hello.c -o bin/hello

FROM scratch
COPY --from=build /app/bin/hello /app/hello

ENTRYPOINT ["/app/hello"

Here, we have the first stage with an alias called build thatis used to
compile the application; then, the second stage uses the scratch base
image and does not install the SDK, but only copies the binary from the
build stage, using the --from parameter, into this final image.

2. Let's build the image again, as follows:

build -t hello-world-small \

—-f Dockerfile.multi-step .

3. Let's compare the sizes of the images with this command:

$ docker image ls | grep hello-world

Here, we get the following output:

) docker image ls | grep hello-world
latest 5620e48864bd 50 seconds ago

-small latest 95e5dfafbdab 4 minutes ago

Figure 4.19: Comparing sizes of Docker images



We have been able to reduce the size from 260 MB to a mere 136 KB. This is a
reduction in size by more than 3 magnitudes! A smaller image has many
advantages, such as a smaller attack surface area for hackers, reduced memory
and disk consumption, faster startup times of the corresponding containers,
and a reduction of the bandwidth needed to download the image from a
registry, such as Docker Hub.

Dockerfile best practices

In this section, we will list down a few recommended best practices to
consider when authoring a Dockerfile, which are as follows:

Containers are ephemeral

First and foremost, we need to consider that containers are meant to be
ephemeral. By ephemeral, we mean that a container can be stopped and
destroyed, and a new one built and put in place with an absolute minimum of
setup and configuration. That means that we should try hard to keep the time
that is needed to initialize the application running inside the container to a
minimum, as well as the time needed to terminate or clean up the application.

Leverage the immutability of container image layers

The next best practice tells us that we should order the individual commands
in the Dockerfile so that we leverage caching as much as possible. Building a
layer of an image can take a considerable amount of time — sometimes many
seconds, or even minutes. While developing an application, we will have to
build the container image for our application multiple times. We want to keep
the build times to a minimum.

When we're rebuilding a previously built image, the only layers that are
rebuilt are the ones that have changed, but if one layer needs to be rebuilt, all
subsequent layers also need to be rebuilt. This is very important to remember.
Consider the following example:

FROM node:23-bookworm

RUN mkdir -p /app

WORKIR /app

COPY . /app

RUN npm install

CMD ["npm", "start"]




In this example, the npm install command on line five of the Dockerfile
usually takes the longest. A classical Node.js application has many external
dependencies, all of which are downloaded and installed during this step. It
can take minutes until it is done. To save time, we want to avoid running npm
install each time we rebuild the image; however, developers often make
changes to their source code during the development of an application. This
means that line four, the result of the copy command, changes every time, and
thus, this layer has to be rebuilt. But as we discussed previously, that also
means that all subsequent layers have to be rebuilt, which —in this case —
includes the npm install command. To avoid this, we can slightly modify the
Dockerfile and have the following:

FROM node:23-bookworm
RUN mkdir -p /app
WORKIR /app

COPY package.json /app/

RUN npm install

COPY . /app

CMD ["npm", "start"

Here, on line four, we only copied the single file that the npm install
command needs as a source, which is the package.json file. This file rarely
changes in a typical development process. As a consequence, the npm install
command also has to be executed only when the package.json file changes. All
the remaining frequently changed content is added to the image after the npm
install command.

Minimize the number of layers

A further best practice is to keep the number of layers that make up your
image relatively small. The more layers an image has, the more the graph
driver needs to work to consolidate the layers into a single root filesystem for
the corresponding container. Of course, this takes time, and thus, the fewer
layers an image has, the faster the startup time for the container can be.

But how can we keep our number of layers low? Remember that, in a
Dockerfile, each line that starts with a keyword such as FROM, COPY, or RUN
creates a new layer. The easiest way to reduce the number of layers is to
combine multiple individual RUN commands into a single one. For example,
say that we had the following in a Dockerfile:



RUN apt-get update

RUN apt-get install -y ca-certificates

RUN rm -rf /var/lib/apt/lists/*

We could combine these into a single concatenated expression, as follows:

RUN apt-get update \

&& apt-get stall -y ca-certificates \

&& rm -rf /var/lib/apt/lists/*

The former will generate three layers in the resulting image, while the latter
will only create a single layer.

Keeping container image sizes minimal

The next three best practices all result in smaller images. Why is this
important? Smaller images reduce the time and bandwidth needed to
download the image from a registry. They also reduce the amount of disk
space needed to store a copy locally on the Docker host and the memory
needed to load the image. Finally, smaller images also mean a smaller attack
surface for hackers. Here are the best practices mentioned:

e The first best practice that helps reduce the image size is to use a
.dockerignore file. We want to avoid copying unnecessary files and
folders into an image, to keep it as lean as possible. A .dockerignore file
works in the same way as a .gitignore file, for those who are familiar
with Git. In a .dockerignore file, we can configure patterns to exclude
certain files or folders from being included in the context when building
the image.

e The next best practice is to avoid installing unnecessary packages in the
filesystem of the image. Once again, this is to keep the image as lean as
possible.

e Lastbutnotleast, itis recommended that you use multi-stage builds so
that the resulting image is as small as possible and only contains the
absolute minimum needed to run your application or application
service.



In the next section, we are going to learn how to create a Docker image from a
previously saved image. In fact, it may look like restoring an image.

Saving and loading images

The third way to create a new container image is by importing or loading it
from a file. A container image is nothing more than a tarball. To demonstrate
this, we can use the docker image save command to export an existing image
to a tarball, like this:

$ mkdir backup

$ docker image save -o ./backup/my-alpine.tar my-alpine

The preceding command takes our my-alpine image that we previously built
and exports itinto a file called . /backup/my-alpine.tar:

> mkdir backup

> docker image save —-o ./backup/my-alpine.tar my-alpine

» ls —al backup

total 31392

drwxr-xr-x@ 3 gabrielschenker staff 96 Apr 20 11:57 .

drwxr-xr-x@ 7 gabrielschenker staff 224 Apr 20 11:57 ..

—rW————— —@ 1 gabrielschenker staff 16072704 Apr 20 11:57 my-alpine.tar

Figure 4.20: Exporting an image as a tarball

If, on the other hand, we have an existing tarball and want to import it as an
image into our system, we can use the docker image load command, as
follows:

$ docker image load -i ./backup/my-alpine.tar

The output of the preceding command should be as follows:

Loaded image: my-alpine:latest

With this, we have learned how to build a Docker image in three different
ways. We can do so interactively, by defining a Dockerfile, or by importing it
into our system from a tarball.

In the next section, we will discuss how we can create Docker images for
existing legacy applications, and thus run them in a container, and profit from
this.



Containerizing a legacy app using the lift and
shift approach

We can't always start from scratch and develop a brand-new application.
More often than not, we find ourselves with a huge portfolio of traditional
applications that are up and running in production and provide mission-
critical value to the company or the customers of the company. Often, those
applications are organically grown and very complex. Documentation is
sparse, and nobody wants to touch such an application. Often, the saying
Never touch a running system applies. Yet, market needs change, and with that
arises the need to update or rewrite those apps. Often, a complete rewrite is
not possible due to the lack of resources and time, or due to the excessive cost.
What are we going to do about those applications? Could we possibly
Dockerize them and profit from the benefits introduced by containers?

It turns out we can. In 2017, Docker introduced a program called Modernize
Traditional Apps (MTA) to their enterprise customers, which in essence
promised to help those customers take their existing or traditional Java and
.NET applications and containerize them, without the need to change a single
line of code. The focus of MTA was on Java and .NET applications since those
made up the lion's share of the traditional applications in a typical enterprise.
But the same is possible for any application that was written in, say, C, C++,
Python, Node.js, Ruby, PHP, or Go, to name just a few other languages and
platforms.

Let's imagine such a legacy application for a moment. Let's assume we have
an old Java application that was written 10 years ago, and that was
continuously updated during the following 5 years. The application is based
on Java SE 6, which came out in December 2006. It uses environment
variables and property files for configuration. Secrets such as usernames and
passwords used in the database connection strings are pulled from a secrets
keystore, such as HashiCorp's Vault.

Now, let's describe each of the required steps to lift and shift a legacy
application in more detail.

Analyzing external dependencies



One of the first steps in the modernization process is to discover and list all
external dependencies of the legacy application:

e Doesituse a database? If so, which one? What does the connection
string look like?

e Does it use external APIs such as credit card approval or geo-mapping
APIs? What are the API keys and key secrets?

e Isitconsuming from or publishing to an Enterprise Service Bus (ESB)?

These are just a few possible dependencies that come to mind. Many more
exist. These are the seams of the application to the outer world, and we need
to be aware of them and create an inventory.

Preparing source code and build instructions

The next step is to locate all the source code and other assets, such as images,
CSS, and HTML files, that are part of the application. Ideally, they should be
located in a single folder. This folder will be the root of our project and can
have as many subfolders as needed. This project root folder will be the context
during the build of the container image we want to create for our legacy
application. Remember, the Docker builder only includes files in the build that
are part of that context; in our case, that is the root project folder.

There is, though, an option to download or copy files during the build from
different locations, using the copy or ADD commands. Please refer to the online
documentation for the exact details on how to use these two commands. This
option is useful if the sources for your legacy application cannot be easily
contained in a single, local folder.

Once we are aware of all the parts that are contributing to the final
application, we need to investigate how the application is built and packaged.
In our case, this is most probably done by using Maven. Maven is the most
popular build automation tool for Java, and has been — and still is — used in
most enterprises that develop Java applications. In the case of alegacy .NET
application, it is most probably done by using the MSBuild tool, and in the
case of a C/C++ application, make would most likely be used.

Once again, let's extend our inventory and write down the exact build
commands used. We will need this information later on, when authoring the
Dockerfile.



Configuration

Applications need to be configured. Information provided during
configuration could be — for example — the type of application logging to use,
connection strings to databases, and hostnames to services such as ESBs or
URISs to external APIs, to name just a few.

We can differentiate a few types of configurations, as follows:

e Build time: This is the information needed during the build of the
application and/or its Docker image. It needs to be available when we
create the Docker images.

e Environment: This is configuration information that varies with the
environment in which the application is running — for example,
development, staging, or production. This kind of configuration is applied
to the application when a container with the app starts — for example, in
production.

e Runtime: This is information that the application retrieves during
runtime, such as secrets to access an external APL

Secrets

Every mission-critical enterprise application needs to deal with secrets in
some form or another. The most familiar secrets are part of the connection
information needed to access databases that are used to persist the data
produced by or used by the application. Other secrets include the credentials
needed to access external APIs, such as a credit score lookup API. It is
important to note that, here, we are talking about secrets that have to be
provided by the application itself to the service providers it uses or depends
on, and not to secrets provided by the users of the application. The actor here
is our own application, which needs to be authenticated and authorized by
external authorities and service providers.

There are various ways traditional applications get their secrets. The worst
and most insecure way of providing secrets is by hardcoding them or reading
them from configuration files or environment variables, where they are
available in cleartext. A much better way is to read the secrets during runtime
from a special secret store that persists the secrets encrypted and provides



them to the application over a secure connection, such as Transport Layer
Security (TLS).

Once again, we need to create an inventory of all secrets that our application
uses and the way it procures them. Thus, we need to ask ourselves where we
can get our secrets from: is it through environment variables or configuration
files, or is it by accessing an external keystore, such as HashiCorp's Vault, AWS
Secrets Manager, or Azure's Secrets Manager?

Authoring the Dockerfile

Once we have a complete inventory of all the items we discussed in the
previous few sections, we are ready to author our Dockerfile. But I want to
warn you: don't expect this to be a one-shot-and-go task. You may need
several iterations until you have crafted your final Dockerfile. The Dockerfile
may be rather long and ugly looking, but that's not a problem, as long as we
get a working Docker image. We can always fine-tune the Dockerfile once we
have a working version.

The base image

Let's start by identifying the base image we want to use and build our image
from. Is there an official Java image available that is compatible with our
requirements? Remember that our application is based on Java SE 6. If such a
base image is available, then we should use that one. Otherwise, we will want
to start with a Linux distro such as Red Hat, Oracle, or Ubuntu. In the latter
case, we will use the appropriate package manager of the distro (yum, apt, or
another) to install the desired versions of Java and Maven. For this, we can use
the RUN keyword in the Dockerfile. Remember, RUN allows us to execute any
valid Linux command in the image during the build process.

Assembling the sources

In this step, we make sure all the source files and other artifacts needed to
successfully build the application are part of the image. Here, we mainly use
the two keywords of the Dockerfile: copy and ApD. Initially, the structure of the
source inside the image should look the same as on the host, to avoid any
build problems. Ideally, you would have a single cory command that copies all
of the root project folders from the host into the image. The corresponding
Dockerfile snippet could then look as simple as this:



WORKDIR /app

oY 5 o

Note

Don't forget to also provide a .dockerignore file, which is located in

the project root folder, which lists all the files and (sub) folders of the
project root folder that should not be part of the build context.

As mentioned earlier, you can also use the ADD keyword to download sources
and other artifacts into the Docker image that are not located in the build
context but somewhere reachable by a URI, as shown here:

ADD http://example.com/foobar ./

This would create a foobar folder in the image's working folder and copy all
the contents from the URL

Building the application

In this step, we make sure to create the final artifacts that make up our
executable legacy application. Often, this is a JAR or WAR file, with or without
some satellite JARs. This part of the Dockerfile should mimic the way you
traditionally used to build an application before containerizing it. Thus, if
you're using Maven as your build automation tool, the corresponding snippet
of the Dockerfile could look as simple as this:

RUN mvn --clean install

In this step, we may also want to list the environment variables the
application uses and provide sensible defaults. But never provide default
values for environment variables that provide secrets to the application, such
as the database connection string! Use the ENV keyword to define your
variables, like this:

ENV foo=bar

ENV baz=123

Also, declare all ports that the application is listening on and that need to be
accessible from outside of the container via the ExPose keyword, like this:



EXPOSE 5000

EXPOSE 15672/tcp

Next, we will explain the start command.

Defining the start command

Usually, a Java application is started with a command such as java -jar
<mainapplication jar>ifitis a standalone application. If it is a WAR file, then
the start command may look a bit different. Therefore, we can either define
ENTRYPOINT or CMD to use this command. Thus, the final statement in our
Dockerfile could look like this:

ENTRYPOINT java -jar pet-shop.war

Often, though, this is too simplistic, and we need to execute a few pre-run
tasks. In this case, we can craft a script file that contains the series of
commands that need to be executed to prepare the environment and run the
application. Such a file is often called docker-entrypoint.sh, but you are free to
name it however you want. Make sure the file is executable — for example, run

the following command on the host:

chmod +x ./docker-entrypoint.sh

The last line of the Dockerfile would then look like this:

ENTRYPOINT ./docker-entrypoint.sh

Now that you have been given hints on how to containerize a legacy

application, it is time to recap and ask ourselves, is it worth the effort?

Why bother?

At this point, I can see you scratching your head and asking yourself: Why
bother? Why should you take on this seemingly huge effort just to
containerize a legacy application? What are the benefits?

It turns out that the return on investment (ROI) is huge. Enterprise customers
of Docker have publicly disclosed at conferences such as DockerCon 2018 and
2019 that they are seeing these two main benefits of Dockerizing traditional
applications:

e More than a 50% saving in maintenance costs



e Upto a 90% reduction in the time between the deployments of new
releases

The costs saved by reducing the maintenance overhead can be directly
reinvested and used to develop new features and products. The time saved
during new releases of traditional applications makes a business more agile
and able to react to changing customer or market needs more quickly.

Now that we have discussed how to build Docker images at length, it is time
to learn how we can ship those images through the various stages of the
software delivery pipeline.

Sharing or shipping images
To be able to ship our custom image to other environments, we need to give it
a globally unique name. This action is often called tagging an image. We then

need to publish the image to a central location from which other interested or
entitled parties can pull it. These central locations are called image registries.

In the following sections, we will describe how this works in more detail.

Tagging an image

Each image has a so-called tag. A tag is often used to version images, but it
has a broader reach than just being a version number. If we do not explicitly
specify a tag when working with images, then Docker automatically assumes
we're referring to the latest tag. This is relevant when pulling an image from
Docker Hub, as shown in the following example:

$ docker image pull alpine

The preceding command will pull the alpine:latest image from Docker Hub.
If we want to explicitly specify a tag, we can do so like this:

$ docker image pull alpine:3.21

This will pull the Alpine image that has been tagged with 3.21.

Demystifying image namespaces

So far, we have been pulling various images and haven't been worrying so
much about where those images originated from. Your Docker environment is
configured so that, by default, all images are pulled from Docker Hub. We also



only pulled so-called official images from Docker Hub, such as alpine or
busybox.

Now, it is time to widen our horizons a bit and learn about how images are
namespaced. The most generic way to define an image is by its fully qualified
name, which looks as follows:

<registry URL>/<User or Org>/<name>:<tag>

Let's look at this in a bit more detail:

Namespace part Description

This is the URL to the registry from
which we want to pull the image. By
default, this is docker.io. More
generally, this could be

https://registry.acme.com.

Other than Docker Hub, there are
quite a few public registries out
there that you could pull images
from. The following is a list of some
of them, in no particular order:

Google, at
https://cloud.google.com/container
-registr

<registry URL> & Y

Amazon AWS Amazon Elastic
Container Registry (ECR), at
https://aws.amazon.com/ecr/

Microsoft Azure, at
https://azure.microsoft.com/en-
us/services/container-registry/

Red Hat, at
https://access.redhat.com/containe
rs/

Artifactory, at



https://registry.acme.com/
https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://access.redhat.com/containers/

Namespace part Description

This is the private Docker ID of
either an individual or an

<User or Org> organization defined on Docker Hub
—or any other registry, for that
matter, such as Microsoft or Oracle.

This is the name of the image,

<name> which is often also called a
repository.
<tag> This is the tag of the image.

Table 4.1: Docker image namespace elements

Let's look at an example, as follows:

https://registry.acme.com/engineering/web-app:1.0

Here, we have an image, web-app, that is tagged with version 1.0 and belongs
to the engineering organization on the private registry at

https://registry.acme.com.
Now, there are some special conventions:

e If we omit the registry URL, then Docker Hub is automatically taken
e If we omit the tag, then the latest tagis taken

e Ifitis an official image on Docker Hub, then no user or organization
namespace is needed

Here are a few samples in tabular form:

Image Description

The official alpine image on Docker

alpine .
P Hub with the latest tag.

The official ubuntu image on Docker

ubuntu:22.04 . .
Hub with the 22.04 tag or version.




Image Description

The vault image of an organization
hashicorp/vault called hashicorp on Docker Hub
with the latest tag.

The web-api image version of 12.0
acme/web-api:12.0 that's associated with the acme org.
The image is on Docker Hub.

The sample-app image with the 1.1

tag, belonging to an individual with
the jdoe ID on Google's container

registry.

gcr.io/jdoe/sample-app:1.1

Table 4.2: Examples of valid Docker image names

Now that we know how the fully qualified name of a Docker image is defined
and what its parts are, let's talk about some special images we can find on
Docker Hub.

Explaining official images
In the preceding table, we mentioned "official image" a few times. This needs
an explanation.

Images are stored in repositories on the Docker Hub registry. Official
repositories are a set of repositories hosted on Docker Hub that are curated by
individuals or organizations that are also responsible for the software
packaged inside the image. Let's look at an example of what that means.
There is an official organization behind the Ubuntu Linux distro. This team
also provides official versions of Docker images that contain their Ubuntu
distros.

Official images are meant to provide essential base OS repositories, images for
popular programming language runtimes, frequently used data storage, and
other important services.

Docker sponsors a team whose task is to review and publish all those curated
images in public repositories on Docker Hub. Furthermore, Docker scans all
official images for vulnerabilities.



Pushing images to a regisiry

Creating custom images is all well and good, but at some point, we want to
share or ship our images to a target environment, such as a test, quality
assurance (QA), or production system. For this, we typically use a container
registry. One of the most popular public registries out there is Docker Hub. It
is configured as a default registry in your Docker environment, and it is the
registry from which we have pulled all our images so far.

On a registry, we can usually create personal or organizational accounts. For
example, the author's account at Docker Hub is gnschenker. Personal accounts
are good for personal use. If we want to use the registry professionally, then
we'll probably want to create an organizational account, such as acme, on
Docker Hub. The advantage of the latter is that organizations can have
multiple teams. Teams can have differing permissions.

To be able to push an image to my account on Docker Hub, I need to tag it
accordingly. Let's say [ want to push the latest version of the Alpine image to
my account and give it a tag of 1.0. I can do this in the following way:

1. Tag the existing image, alpine: latest, with this command:

$ docker image tag alpine:latest gnschenker/alpine:1.0

Here, Docker does not create a new image but creates a new reference to
the existing image, alpine:latest, and names it gnschenker/alpine:1.e.

2. Now, to be able to push the image, I have to log in to my account, as
follows:

$ docker login -u gnschenker -p <my secret password>

3. Make sure to replace gnschenker with your own Docker Hub username
and <my secret password> with your password.

4. After a successful login, I can then push the image, like this:

$ docker image push gnschenker/alpine:1.0

5. Iwill see something similar to this in the Terminal window:

The push refers to repository [docker.io/gnschenker/alpine]

04a094fe844e: Mounted from 1i

1.0: digest: sha256:5cb04fce... size: 528




For each image that we push to Docker Hub, we automatically create a
repository. A repository can be private or public. Everyone can pull an image
from a public repository. From a private repository, an image can only be
pulled if you are logged in to the registry and have the necessary permissions
configured.

Supply chain security practices

Supply chain security is a critical aspect of managing Docker images,
especially in environments where security compliance and resilience against
vulnerabilities are mandatory. Implementing robust supply chain security
practices ensures that container images remain trustworthy and free from
vulnerabilities throughout their lifecycle.

Key practices to enhance supply chain security include the following:

¢ Using official and verified images: Always prefer official Docker images
or those verified by trusted vendors. These images are regularly updated
and scanned for vulnerabilities.

e Image scanning: Regularly scan container images using vulnerability
scanning tools such as Trivy, Clair, or Docker Scout. These tools help
detect known vulnerabilities and suggest remediation strategies.

e Image signing and verification: Use digital signatures (such as Docker
Content Trust, implemented via Notary) to ensure the integrity and
authenticity of your images. Signed images help verify that the image
has not been tampered with and originates from a trusted source.

e Least privilege principle: Run containers using minimal permissions
necessary. Avoid running containers as the root user to reduce potential
attack surfaces.

e Regular updates and patches: Continuously monitor and update images
to integrate the latest security patches and fixes provided by the image
maintainers.

By incorporating these practices into our containerization workflow, we can
significantly reduce the risk of security breaches and ensure our containerized
applications run securely in production. We will dive into more details in
Chapter 8, Docker Tips and Tricks.



Summary

In this chapter, we explored the fundamental concepts and practices of
creating and managing Docker container images. We started by examining
the layered architecture of Docker images and the crucial role of graph drivers
(also known as storage drivers). We saw how these graph drivers, particularly
the widely recommended overlay2, efficiently merge multiple immutable
layers into a unified root filesystem used by containers.

Next, we walked through practical approaches to building container images,
including interactive image creation, Dockerfile-driven builds, and methods
for saving and loading images. Additionally, we introduced a pragmatic "lift
and shift" approach to help modernize legacy applications, outlining a
structured process involving dependency analysis, configuration
management, and secure handling of secrets.

Finally, we highlighted the importance of supply chain security practices,
emphasizing key strategies for securing Docker images. We discussed best
practices such as using official and verified images, regularly scanning for
vulnerabilities, employing image signing to ensure authenticity, applying the
principle of least privilege to containers, and consistently integrating security
updates and patches.

By following these guidelines, we reinforced how containerized applications
can be securely and efficiently prepared for robust production deployments.

In the next chapter, we will delve into managing data in Docker containers,
focusing on data volumes, environment variables, and the use of
configuration files. We will learn practical approaches to persist data and
configure applications securely and effectively.

Questions

Please try to answer the following questions to assess your learning progress:
1. What is the primary function of Docker graph drivers?
2. What is a Dockerfile used for?

3. How can you create a Docker image interactively?

4. What are two important benefits of using multi-stage builds in
Dockerfiles?



5. What are three best practices for securing the Docker image supply
chain?

6. How would you create a Dockerfile that inherits from Ubuntu version
25.04, and that installs ping and runs ping when a container starts? The
default address used to ping should be 127.0.0.1.

7. How would you create a new container image that uses alpine:latest as
a base image and installs curl on top of it? Name the new image my-
alpine:1.0.

8. Create a Dockerfile that uses multiple steps to create an image of a Hello
World app of minimal size, written in C or Go.

9. Name three essential characteristics of a Docker container image.
10. What command can you use to export a Docker image as a tarball?

11. You want to push an image named foo:1.0 to your jdoe personal account
on Docker Hub. Which of the following is the right solution?

a. $ docker container push fo00:1.90

b.$ docker image tag fo0:1.0 jdoe/f00:1.0

C.$ docker image push jdoe/fo00:1.0

d. $ docker login -u jdoe -p <your password>
€. $ docker image tag foo0:1.0 jdoe/fo0:1.0

f.$ docker image push jdoe/foo:1.0

g. $ docker login -u jdoe -p <your password>
h. $ docker container tag f00:1.0 jdoe/f00:1.0
1.$ docker container push jdoe/foo:1.0

j.$ docker login -u jdoe -p <your password>

k. $ docker image push f00:1.0 jdoe/f00:1.0

Answers

Here are possible answers to this chapter's questions:
1. Graph drivers merge multiple image layers into a single, coherent root
filesystem used by containers.

2. A Dockerfile is used as a declarative method to define and build Docker
container images consistently and repeatably.



3. You can create a Docker image interactively by running a container from
an existing base image, making manual changes, and then committing
those changes into a new image using the docker commit command.

4. Multi-stage builds help create significantly smaller container images by
including only essential runtime components and improve security by
minimizing the attack surface.

5. Three best practices to secure the Docker image supply chain are:
a. Regularly scanning images for vulnerabilities.
b. Using official or verified images from trusted sources.

c. Implementing image signing and verification to ensure
authenticity.

6. The Dockerfile could look like this:

FROM ubuntu:25.04

RUN apt-get update && \

apt-get install -y iputils-ping
ENTRYPOINT ["ping"]

CMD ["127.0.0.1"

Note that in Ubuntu, the ping tool is part of the iputils-ping package.
You can build the image called pinger — for example — with the following
command:

$ docker image build -t mypinger .

7. The Dockerfile could look like this:

FROM alpine:latest
RUN apk update && \

apk add curl

Build the image with the following command:

$ docker image build -t my-alpine:1.0 .

8. The Dockerfile for a Go application could look like this:

FROM golang:1.23 AS builder
WORKDIR /app
# Disable modules so no go.mod is needed

ENV GO111MODULE=off

COPY main.go .




RUN CGO_ENABLED=0 GOOS=linux \

go build -ldflags="-s -w" -o hello
FROM scratch
COPY --from=builder /app/hello /hello

ENTRYPOINT ["/hello"]

You can find the full solution in the ~/The-Ultimate-Docker-Container-
Book-Fourth-Edition/chapter-04/solutions/answer-08 folder.
9. A Docker image has the following characteristics:
o Itisimmutable
o It consists of one-to-many layers

o It contains the files and folders needed for the packaged application
to run
10. Use the docker image save command to export an image as a tarball, for

example: docker image save -o image.tar <image-name>.

11. The correct answer is C. First, you need to log in to Docker Hub; then,
you must tag your image correctly with the username. Finally, you must
push the image.
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In the previous chapter, we learned how to build and share our container
images. Focus was placed on how to build images that are as small as possible
by only containing artifacts that are needed by the containerized application.

In this chapter, we are going to learn how we can work with stateful
containers — that is, containers that consume and produce data. We will also
learn how to configure our containers at runtime and at image build time,
using environment variables and config files.

Here is a list of the topics we're going to discuss:

e Creating and mounting data volumes

e Sharing data between containers

e Using host volumes

e Defining volumes in images

e Configuring containers

e Persistent storage and stateful container patterns

After working through this chapter, you will be able to do the following:

e Create, delete, and list data volumes

e Mount an existing data volume into a container

e Create durable data from within a container using a data volume
e Share data between multiple containers using data volumes

e Mount any host folder into a container using data volumes

* Define the access mode (read/write or read-only) for a container when
accessing data in a data volume

e Configure environment variables for applications running in a container


https://packt.link/mqfS2

e Parameterize a Dockerfile by using build arguments

Technical requirements

For this chapter, you need to have Docker Desktop installed on your machine.
There is no code accompanying this chapter.

Before we start, we need to create a folder for Chapter 5 inside our code
repository:

1. Use this command to navigate to the folder where you checked out the
code from GitHub:

$ cd ~/The-Ultimate-Docker-Container-Book-v4

Note

If you did not check out the GitHub repository at the default location,
the preceding command may vary for you.

1. Create a sub-folder for Chapter 5 and navigate to it:

$ mkdir chapter-05 && cd chapter-05

Let's get started!

Creating and mounting data volumes

All meaningful applications consume or produce data. Yet containers are,
preferably, meant to be stateless. How are we going to deal with this? One way
is to use Docker volumes. Volumes allow containers to consume, produce, and
modify a state. Volumes have a life cycle that goes beyond the life cycle of
containers. When a container that uses a volume dies, the volume continues
to exist. This is great for the durability of the state.

Modifying the container layer

Before we dive into volumes, let's first discuss what happens if an application
in a container changes something in the filesystem of the container. In this
case, the changes are all happening in the writable container layer that we



introduced in Chapter 4, Creating and Managing Container Images. Let's quickly
demonstrate this:

1. Run a container and execute a scriptin it that creates a new file, like this:

$ docker container run --name demo alpine \

/bin/sh -c 'echo "This is a test" > sample.txt'

2. The preceding command creates a container named demo, and, inside this
container, creates a file called sample.txt with the content This is a
test. The container exits after running the echo command but remains in
memory, available for us to do our investigations.

3. Let's use the diff command to find out what has changed in the
container's filesystem concerning the filesystem of the original image, as
follows:

$ docker container diff demo

The output should look like this:

A /sample.txt

4. Anew file, as indicated by the letter A, has been added to the filesystem
of the container, as expected. Since all layers that stem from the
underlying image (Alpine, in this case) are immutable, the change could
only happen in the writeable container layer.

Files that have changed compared to the original image will be marked with a
¢, and those that have been deleted with ab.

Now, if we remove the container from memory, its container layer will also be
removed, and with it, all the changes will be irreversibly deleted. If we need
our changes to persist even beyond the lifetime of the container, this is not a
solution. Luckily, we have better options in the form of Docker volumes. Let's
get to know them.

Creating volumes

When using Docker Desktop on a macOS or Windows computer, containers
are not running natively on macOS or Windows but rather in a (hidden) VM
created by Docker Desktop.



To demonstrate how and where the underlying data structures are created in
the respective filesystem (MacOS or Windows), we need to be a bit creative. If,
on the other hand, we are doing the same on a Linux computer, things are
straightforward.

Let's start with a simple exercise to create a volume:

1. Open a new Terminal window and type in this command:

&

$ docker volume create sample

You should get this response:

Here, the name of the created volume will be the output.

The default volume driver is the so-called local driver, which stores the
data locally in the host filesystem.

2. The easiest way to find out where the data is stored on the host is by
using the docker volume inspect command on the volume we just
created. The actual location can differ from system to system, so this is
the safest way to find the target folder. So, let's use this command:

$ docker volume inspect sample

We should see something like this:

> docker volume inspect sample
[
{
"CreatedAt": "2025-04-27T08:30:36Z",

"Driver": "local",
"Labels": null,

"Mountpoint": "/var/lib/docker/volumes/sample/_data",
"Name'": "sample",
"Options": null,
"Scope": "local"

Figure 5.1: Inspecting the Docker volume called sample

The host folder can be found in the output under Mountpoint. In our case,
the folder is /var/1lib/docker/volumes/sample/_data.



3. Alternatively, we can create a volume using the dashboard of Docker
Desktop:

a. Open the dashboard of Docker Desktop.
b. On the left-hand side, select the Volumes tab.

c. Click the blue button, as shown in the following screenshot:
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Figure 5.2: Creating a new Docker volume with Docker for Desktop

d. Then type sample-2 as the name for the new volume into the
textbox of the New Volume popup and click Create. You should now
see this:

Volumes Gcie feedback @

Manage your volumes, view usage, and inspect their contents. Learn more (7

Q Search = ([

(] Name 1 Created Size Actions
O O sample 2 minutes ago OBytes (3 W
O O sample-2 1 second ago OBytes (90 W

Figure 5.3: List of Docker volumes shown in Docker Desktop

There are other volume drivers available from third parties, in the form of
plugins. We can use the --driver parameter in the create command to select a
different volume driver.



Other volume drivers use different types of storage systems to back a volume,
such as cloud storage, Network File System (NFS) drives, software-defined
storage, and more. The discussion of the correct usage of other volume drivers
is beyond the scope of this book, though.

Nevertheless, here is a list of popular volume drivers, including their
manufacturer and main usage:

Description and main
usage

Driver Manufacturer

Default driver storing
data on the local host
filesystem. Suitable for
local Docker single-host
deployments and
development
environments.

Utilizes Network File
System (NFS) for
sharing volumes

nfs Docker across multiple hosts.
Ideal for distributed
systems requiring
shared storage.

Employs the Common
Internet File System
(CIFS) protocol to

cifs Docker mount Samba shares,
facilitating integration
with Windows-based
storage systems.

Enables mounting of
various cloud storage
services (for example,
Google Drive,
Dropbox) as volumes,
allowing containers to
interact with cloud-
based filesystems.

rclone Rclone




Driver

Manufacturer

Description and main
usage

rexray/ebs

REX-Ray

Integrates with
Amazon Elastic Block
Store (EBS) to provide
persistent block
storage for containers
in AWS environments.

flocker

ClusterHQ

Manages data volumes
for Docker containers,
facilitating data
migration between
hosts in a cluster.

portworx

Portworx

Offers high-
performance,
container-granular
storage solutions with
features such as
replication, snapshots,
and encryption,
suitable for enterprise
environments.

glusterfx

Gluster

Provides scalable
network filesystem
capabilities, allowing
containers to access
shared storage across
multiple nodes.

azurefile

Microsoft Azure

Connects containers to
Azure File Storage,
enabling persistent
storage for
applications running
in Azure.




Description and main

Driver Manufacturer
usage
Integrates Google
Compute Engine
gce-pd Google Cloud Persistent Disks with

Docker, offering
durable block storage
for containers in GCP.

Table 5.1: Popular Docker volume drivers

These drivers extend Docker's storage capabilities, allowing for flexible and
scalable data management across various environments and infrastructures.

Interestingly, AWS — the biggest cloud provider — does not offer a specific
Docker volume driver itself, but it supports the use of Docker volume drivers
through Amazon Elastic Container Service (ECS) when using the EC2 launch
type. We can use the built-in local driver or third-party volume drivers such as
REX-Ray, Portworx, or others to manage persistent storage with Docker
volumes.

Mounting a volume

Once we have created a named volume, we can mount it into a container by
following these steps:

1. For this, we can use the --volume or -v parameter in the docker container
run command, like this:

$ docker container run --name test -it \

-v sample:/data \

alpine /bin/sh

If you are working in a clean Docker environment, then the output
produced by this command should look similar to this:
Unable to find image 'alpine:latest' locally latest:

Pulling from library/

050382585609: Pull complete

Digest: shz 8914eb54£968791faf6a86. ..

Status: Downloaded newer image for alpine:latest

/#




Otherwise, you should just see the prompt of the Bourne shell running
inside the Alpine container:

The preceding command mounts the sample volume to the /data folder
inside the container.

. Inside the container, we can now create files in the /data folder, as
follows:

/ # cd /data

/data # echo "Some data" > data.txt

/data # echo "Some more data" > data2.txt

. If we were to navigate to the host folder that contains the data of the
volume and list its content, we should see the two files we just created
inside the container. But this is a bit more involved, so long as we are
working on a Mac or Windows computer, and will be explained in detail
in the Accessing Docker volumes section. Stay tuned.

4. Exit the tool container by pressing Ctrl + D.

5. Now, let's delete the dangling test container:

$ docker container rm test

. Next, we must run another one based on CentOS. This time, we are even
mounting our volume to a different container folder, /app/data, like this:

$ docker container run --name test2 -it --rm \

-v sample:/app/data \

centos:7 /bin/bash

You should see an output similar to this:
» docker container run —name test2 -it —rm \
-v sample:/app/data \
centos:7 /bin/bash

Unable to find image ‘centos:7' locally

7: Pulling from library/centos

6717b8ec66cd: Pull complete

Digest: sha256:be65f488b7764ad36381236b7b515b3678369a5124c47b8d32916d6487418ea4
Status: Downloaded newer image for centos:7

[root@74c99e6664ca /1# ]

Figure 5.4: Mounting the sample volume into a CentOS 7 container



The last line of the preceding output indicates that we are at the prompt
of the Bash shell running inside the CentOS container.

7. Once inside the CentOS container, we can navigate to the /app/data
folder to which we have mounted the volume and list its content. We
should see the following:

[root@74c99e6664ca /1# cd app/data/
[root@74c99e6664ca datal# 1ls -al

total 16

drwxr-xr-x 2 root root 4096 Apr 27 09:08

drwxr-xr=x 3 root root 4096 Apr 27 09:10
-rw-r--r—— 1 root root 10 Apr 27 09:08 data.txt
—rw—r——r— 1 root root 15 Apr 27 09:08 data2.txt
[root@74c99e6664ca datal# |

Figure 5.5: Listing the files of the sample volume inside the CentOS container

This is the definitive proof that data in a Docker volume persists beyond
the lifetime of a container, as well as that volumes can be reused by
other, even different, containers from the one that used it first.

Itis important to note that the folder inside the container to which we
mount a Docker volume is excluded from the Union filesystem. That is,
each change inside this folder and any of its subfolders will not be part
of the container layer but will be persisted in the backing storage
provided by the volume driver. This fact is really important since the
container layer is deleted when the corresponding container is stopped
and removed from the system.

8. Exit the CentOS container with Ctrl + D.

Great — we have learned how to mount Docker volumes into a container! Next,
we will learn how to delete existing volumes from our system.

Removing volumes

Volumes can be removed using the docker volume rmcommand. Itis
important to remember that removing a volume destroys the containing data
irreversibly, and thus is to be considered a dangerous command. Docker helps
us a bitin this regard, as it does not allow us to delete a volume that is still in
use by a container. Always make sure, before you remove or delete a volume,



that you either have a backup of its data or you don't need this data anymore.
Let's learn how to remove volumes by following these steps:

1. The following command deletes the sample volume that we created
earlier:

$ docker volume rm sample

In case you get an error saying that the volume is still in use, please make
sure that both test and test2 containers have been removed.

2. After executing the preceding command, double-check that the folder on
the host has been deleted. You can use this command to list all volumes
defined on your system:

S docker volume ls

Make sure the sample volume has been deleted.

3. Now, as an exercise, also remove the sample-2 volume from your system.

4. To remove all running containers to clean up the system, run the
following command:

$ docker container rm -v -f $(docker container ls -aq)

5. Note that by using the -v or --volume flag in the command you use to
remove a container, you can ask the system to also remove any
anonymous volume associated with that particular container. Of course,
that will only work if the particular volume is only used by this
container.

In the next section, we will show you how to access the backing folder of a
volume when working with Docker Desktop.

Accessing Docker volumes

Now, let's, for a moment, assume that we are on a Mac with macOS. This
operating system is not based on Linux but on a different Unix flavor. Let's see
if we can find the data structure for the sample and sample-2 volumes, where
the docker volume inspect command told us so:

1. First, let's create two named Docker volumes, either using the command
line or doing the same via the dashboard of Docker for Desktop:



er volume create sample

volume create sample-2

2. In your Terminal, try to navigate to that folder:

$ cd /var/lib/docker/volumes/sample/ data

On the author's MacBook Air, this is the response to the preceding
command:

) — c /var/lib/docker/volumes/sample/_data

cd: no such file or directory: /var/lib/docker/volumes/sample/_data

Figure 5.6: Accessing the volumes directory on a Mac

This was expected since Docker is not running natively on Mac but
inside a slim VM, as mentioned earlier in this chapter.

Similarly, if you are using a Windows machine, you won't find the data
where the inspect command indicated.

It turns out that on a Mac, the data for the VM that Docker creates can be
found in the ~/Library/Containers/com.docker.docker/Data/vms/0@ folder.

To access this data, we need to somehow get into this VM. On a Mac, we
have two options to do so. The first is to use the terminal screen
command. However, this is very specific to macOS, and thus, we will not
discuss it here. The second option is to get access to the filesystem of
Docker Mac via the special nsenter command, which should be executed
inside a Linux container such as Debian. This also works on Windows,
and thus, we will show the steps needed using this second option.

3. To run a container that can inspect the underlying host filesystem on
your system, use this command:

$ docker container run -it --privileged --pid=host \

debian nsenter -t 1 -m -u -n -i sh

When running the container, we execute the following command inside
the container:

nsenter -t 1 -m -u -n -i sh



If that sounds complicated to you, don't worry; you will understand
more as we proceed through this book. If there is one takeaway, then it is
to realize how powerful the right use of containers can be.

4. From within this container, we can now list all the volumes that are
defined with / # 1s -1 /var/lib/docker/volumes. What we get should
look similar to this:

/ # nsenter -t 1 -m —u -n -i sh

/ # 1s -1 /var/lib/docker/volumes

total 92

brw———— root root 254, 1 Apr 27 09:06 backingFsBlockDev

-rw——m"m root root 131072 Apr 27 09:20 metadata.db
drwx————x root root 4096 Apr 27 09:20

d rwx————-x root root 4096 Apr 27 09:20

/7 #1

Figure 5.7: List of Docker volumes via nsenter

5. Next, navigate to the folder representing the mount point of the volume:

/ # cd /var/lib/docker/volumes/sample/ data

6. Then list its content, as follows:

/var/lib/docker/volumes/sample/ data # 1ls -1

This should output the following:

/ # cd /var/lib/docker/volumes/sample/_data

/var/lib/docker/volumes/sample/_data # 1ls -al

total 8

drwxr-=xr-x 2 root root 4096 Apr 27 09:20
3 root root 4096 Apr 27 09:20

/var/lib/docker/volumes/sample/_data # |

Figure 5.8: List files in volume sample

The folder is currently empty since we have not yet stored any data in
the volume.

7. Similarly, for our sample-2 volume, we can use the following command:

/ # cd /var/lib/docker/volumes/sample-2/ data

/var/lib/docker/volumes/sample-2/ # 1ls -1

Again, this should output a similar result, indicating that the folder is
currently empty.



8. Next, let's generate two files with data in the sample volume from within
an Alpine container. First, open a new Terminal window, since the other
one is blocked by our nsenter session.

9. To run the container and mount the sample volume to the /data folder of
the container, use the following code:

ker container run --rm -it \

-v sample:/data alpine /bin/sh

10. Generate two files in the /data folder inside the container, like this:

/ # echo "Hello > /data/sample.txt

/ # echo "Other " > /data/other.txt

11. Exit the Alpine container by pressing Ctrl + D.

12.Back in the nsenter session, try to list the content of the sample volume
again using this command:

/ # cd /var/lib/docker/volumes/sample/ data

/ # 1ls -al

This time, you should see this:

~ # cd /var/lib/docker/volumes/sample/_data
/var/lib/docker/volumes/sample/_data # 1ls -al

total 16

drwxr—xr—x 2 root root 4096 Apr 27 @9:30

drwx———x 3 root root 4096 Apr 27 09:20
—rW=r=—~— 1 root root 14 Apr 27 ©09:30 other.txt
—rwW=r—r—— 1 root root 12 Apr 27 09:30 sample.txt
/var/ib/docker/volumes/sample/_data # i

Figure 5.9: Volume sample containing the two files created in the Alpine container
This indicates that we have data written to the filesystem of the host.

13. Let's try to create a file from within this special container, and then list
the contents of the folder, as follows:

/ # echo "I love Docker" > docker.txt

14. Now, let's see what we got:

This gives us something like this:



Figure 5.10: Volume containing file generated directly on the host

1. Let's see if we can see this new file from within a container mounting the
sample volume. From within a new Terminal window, run this
command:

S docker container run --rm \

sample:/data \

centos:7 1ls -1 /data

This should output this:

» docker container run —rm \
-v sample:/data \
centos:7 1ls -1 /data

total 12

—-rw-r—r—— 1 root root 14 Apr 27 09:34 docker.txt
—rw-r——r—— 1 root root 14 Apr 27 09:30 other.txt
-rw=r—=—r=— 1 root root 12 Apr 27 09:30 sample.txt

Figure 5.11: List of files as observed from within the Alpine container

The preceding output is showing us that we can add content directly to
the host folder backing the volume and then access it from a container
that has the volume mounted.

2. To exit our special privileged container with the nsenter tool, we can just
press Ctrl + D twice.
We have now created data using two different methods, as follows:

e From within a container that has a sample volume mounted

e Using a special privileged folder to access the hidden VM used by Docker
for Desktop, and directly writing into the backing folder of the sample
volume

In the next section, we will learn how to share data between containers.

Sharing data between containers



Containers are like sandboxes for the applications running inside them. This
is mostly beneficial and wanted, to protect applications running in different
containers from each other. It also means that the whole filesystem visible to
an application running inside a container is private to this application, and no
other application running in a different container can interfere with it.

At times, though, we want to share data between containers. Say an
application running in container A produces some data that will be consumed
by another application running in container B. How can we achieve this? Well,
I'm sure you've already guessed it — we can use Docker volumes for this
purpose. We can create a volume and mount it to container A, as well as to
container B. In this way, both applications A and B have access to the same
data.

Now, as always, when multiple applications or processes concurrently access
data, we have to be very careful to avoid inconsistencies. To avoid concurrency
problems such as race conditions, we should ideally have only one application
or process that is creating or modifying data, while all other processes
concurrently accessing this data only read it.

Race conditions

A race condition is a situation that can occur in computer
programming when the output of a program or process is affected by
the order and timing of events in ways that are unpredictable or
unexpected. In a race condition, two or more parts of a program are
trying to access or modify the same data or resource simultaneously,
and the outcome depends on the timing of these events. This can
result in incorrect or inconsistent output, errors, or crashes.

We can enforce a process running in a container to only be able to read the
data in a volume by mounting this volume as read-only. Here's how we can do
this:

1. Execute the following command:

$ docker container run -it --name writer \

-v shared-data:/data \

alpine /bin/sh



Here, we are creating a container called writer that has a volume, shared-
data, mounted in default read /write mode.

2. Try to create a file inside this container, like this:

# / echo "I can create a file" > /data/sample.txt

It should succeed.
3. Exit this container by pressing Ctrl + D or typing exit and hitting the
Enter key at the prompt.

4. Then, execute the following command:

S docker container run -it --name reader \

-v shared-data:/app/data:ro \

ubuntu:25.04 /bin/bash

Here, we have a container called reader that has the same volume
mounted as read-only (ro).

5. First, make sure you can see the file created in the first container, like
this:

$ 1s -1 /app/data

This should give you something like this:

» docker container run -it --name reader \
—-v shared-data:/app/data:ro \
ubuntu:25.04 /bin/bash

Unable to find image 'ubuntu:25.@4' locally

25.04: Pulling from library/ubuntu

36dff27e34eb: Already exists

Digest: sha256:79efa276fdefa2ee3911db29b0608T8c0561c347ec3t4d4139980d43b168d991
Status: Downloaded newer image for ubuntu:25.04

root@ce@14003e628:/# 1ls -1 /app/data

total 4

—-rw=r——r— 1 root root 20 Apr 27 09:42 sample.txt

root@6e014003e628: /#

Figure 5.12: Listing files of a read-only volume

6. Then, try to create a file, like this:

#/ echo "Try to break read/only" > /app/data/data.txt

It will fail with the following message:

bash: /app/data/data.txt: Read-only file system




This is expected since the volume was mounted as read-only.

7. Let's exit the container by typing exit at the command prompt. Back on
the host, let's clean up all containers and volumes, as follows:

tainer rm -f $(docker container 1ls -aq)

Exercise: Analyze the preceding commands carefully and try to
understand what exactly they do and how they work.

Next, we will show you how to mount arbitrary folders from the Docker host
into a container.

Using host volumes

In certain scenarios, such as when developing new containerized applications
or when a containerized application needs to consume data from a certain
folder produced, say, by a legacy application, it is very useful to use volumes
that mount a specific host folder. Let's look at the following example:

$ docker container run --rm -it \

-v $(pwd) /src:/app/src \

alpine:latest /bin/sh

The preceding expression interactively starts an Alpine container with a shell
and mounts the src subfolder of the current directory into the container at
/app/src. We need to use $(pwd) (or pwd, for that matter), which is the current
directory, as when working with volumes, we always need to use absolute
paths.

The first time you' execute the preceding command, macOS will ask you for
permission:



“Docker.app” would like to
access files in your Documents
folder.

Don't Allow Allow

Figure 5.13: The operating system asking for permission to access files in a protected folder

Hit Allow and proceed.

Developers use these techniques all the time when they are working on an
application that runs in a container and want to make sure that the container
always contains the latest changes they make to the code, without the need to
rebuild the image and rerun the container after each change.

Let's make a sample to demonstrate how that works. Let's say we want to
create a simple static website while using Nginx as our web server, as follows:

1. First, let's create a new subfolder on the host. The best place to do this is
inside the chapter folder we created at the beginning of the chapter.
There, we will put our web assets, such as HTML, CSS, and JavaScript
files. Use this command to create the subfolder and navigate to it:

$ cd ~/The-Ultimate-Docker-Container-Book-v4

$ cd chapter-05

$ mkdir my-web && cd my-web




2. Then, create a simple web page, like this:

$ echo "<hl>Personal Website</hl>" > index.html

3. Now, add a Dockerfile that will contain instructions on how to build the
image containing our sample website. Add a file called Dockerfile to the
folder, with this content:

FROM nginx:alpine

COPY . /usr/share/nginx/html

The Dockerfile starts with the latest Alpine version of Nginx and then
copies all files from the current host directory into the
/usr/share/nginx/html containers folder. This is where Nginx expects
web assets to be located.

4. Now, let's build the image with the following command:

$ docker image build -t my-website:1.0 .

Please do not forget the period (.) at the end of the preceding command.
The output of this command will look similar to this:

» docker image build -t my-website:1.0 .
[+] Building @.1s (7/7) FINISHED docker:desktop-linux

What's next:
View a summary of image vulnerabilities and recommendations -

Figure 5.14: Building a Docker image for a sample Nginx web server

5. Finally, we will run a container from this image. We will run the
container in detached mode, like this:

$ docker container run -d \

--name my-site \

my-website:1.0




10.

Note the -p 8080:80 parameter. We haven't discussed this yet, but we
will do so in detail in Chapter 10, Single-Host Networking. At the moment,
just know that this maps the container port 80 on which Nginx is
listening for incoming requests to port 8e8e of your laptop, where you
can then access the application.

. Now, open a browser tab and navigate to

http://localhost:8080/index.html; you should see your website, which
currently consists only of a title, Personal Website.

. Now, edit the index.html file in your favorite editor so that it looks like

this:

<hl>Personal Website - Version 2</hl>

<p>This is some text</p>

. Now, save it, and then refresh the browser. Oh! That didn't work. The

browser still displays the previous version of the index.html file, which
consists only of the title. So, let's stop and remove the current container,
then rebuild the image and rerun the container, as follows:

build -t my-we

docker container run -d \
--name my-site \
-p 8080:80 \

my-website:1.0

. Refresh the browser again. This time, the new content should be shown.

Well, it worked, but there is way too much friction involved. Imagine you
have to do this every time you make a simple change to your website.
That's not sustainable.

Now is the time to use host-mounted volumes. Once again, remove the
current container and rerun it with the volume mount, like this:

$ docker container rm -f my-site
$ docker co er run -d \

—-name T =\

-v $(pwd) : /usr/share/nginx/html \

-p 80

my-website:1.0



Note

If you are working on Windows, a pop-up window will be displayed
that says Docker wants to access the hard drive, and that you have to
click on the Share access button.

1. Now, append some more content to the index.html file and save it. Then,
refresh your browser. You should see the changes. This is exactly what
we wanted to achieve; we also call this an edit-and-continue experience.
You can make as many changes in your web files and always
immediately see the result in the browser, without having to rebuild the
image and restart the container containing your website.

2. When you're done playing with your web server and wish to clean up
your system, remove the container with the following command:

$ docker container rm -f my-site

It is important to note that the updates are now propagated bi-directionally. If
you make changes on the host, they will be propagated to the container, and
vice versa. It's also important to note that when you mount the current folder
into the container target folder, /usr/share/nginx/html, the content thatis
already there is replaced by the content of the host folder.

In the next section, we will learn how to define volumes used in a Docker
image.

Defining volumes in images

If we go back to what we learned about containers in Chapter 4, Creating and
Managing Container Images, we will recall this: the filesystem of each
container, when started, is made up of the immutable layers of the underlying
image, plus a writable container layer specific to this very container. All
changes that the processes running inside the container make to the
filesystem will be persisted in this container layer. Once the container is
stopped and removed from the system, the corresponding container layer is
deleted from the system and irreversibly lost.

Some applications, such as databases running in containers, need to persist
their data beyond the lifetime of the container. In this case, they can use



volumes. To make things a bit more explicit, let's look at a concrete example.
MongoDB is a popular open source document database. Many developers use
MongoDB as a storage service for their applications. To support this, the
maintainers of MongoDB have created an image and published it on Docker
Hub, which can be used to run an instance of the database in a container. This
database will produce data that needs to be persisted long-term, but the
MongoDB maintainers do not know who uses this image and how it is used.
So, they can't influence the docker container run command with which the
users of the database will start this container. So, how can they define
volumes?

Luckily, there is a way of defining volumes in the Dockerfile. The keyword to
do so is VOLUME, and we can either add the absolute path to a single folder or a
comma-separated list of paths. These paths represent the folders of the
container's filesystem. Let's look at a few samples of such volume definitions,
as follows:

VOLUME /app/data
VOLUME /app/data, /app/profiles, /app/config
VOLUME ["/app/data", "/app/profiles", "/app/config"]

The first line in the preceding snippet defines a single volume to be mounted
at /app/data. The second line defines three volumes as a comma-separated
list. The last one defines the same as the second line, but this time, the value is
formatted as a JSON array.

When a container is started, Docker automatically creates a volume and
mounts it to the corresponding target folder of the container for each path
defined in the Dockerfile. Since each volume is created automatically by
Docker, it will have SHA-256 as its ID.

At container runtime, the folders defined as volumes in the Dockerfile are
excluded from the Union filesystem, and thus any changes in those folders do
not change the container layer but are persisted to the respective volume. It is
now the responsibility of the operations engineers to make sure that the
backing storage of the volumes is properly backed up.

We can use the docker image inspect command to getinformation about the
volumes defined in the Dockerfile. Let's see what MongoDB gives us by
following these steps:



1. First, we will pull the image with the following command:

$ docker image pull mongo:8.0.8

You should see this:

» docker image pull mongo:8.0.8

8.0.8: Pulling from library/mongo
49h96e96358d:
647de49b3154:
268841dcd611:
638631464116:
7e63d955562b:
c2096b08ele2:
9d88392cb@5a:
d@4becf8fedo:

Pull
Pull
Pull
Pull
Pull
Pull
Pull
Pull

complete
complete
complete
complete
complete
complete
complete
complete

Digest: sha256:cc62438c8ef61ced2f89b4f7c026e735dT4580e8cd8857980d12e0eae73bTa44
Status: Downloaded newer image for mongo:8.0.8

docker.io/library/mongo:8.0.8

Figure 5.15: Pulling the latest MongoDB image from Docker Hub

2. Then, we will inspect this image and use the --format parameter to only
extract the essential part from the massive amount of data, as follows:

&

—--format="'{{Jjson

$ docker image inspe

mongo:8.0.8 | jq .

ct

\

.Config.Volumes}}'

\
\

Note | jq . atthe end of the command. We are piping the output of

docker image inspect into the jq tool, which nicely formats the output.

Tip

If you haven't installed jq yet on your system, you can do so with brew
install jqon macOS or choco install jqon Windows.

The preceding command will return the following result:



) docker image inspect \
—format="{{json .Config.Volumes}}' \
mongo:8.0.8 | jq .

Figure 5.16: Volumes section of the MongoDB configuration

As we can see, the Dockerfile for MongoDB defines two volumes at
/data/configdb and /data/db.

1. Now, let's run an instance of MongoDB in the background as a daemon,
as follows:

$ docker run --name my-mongo -d mongo:8.0.8

2. We can now use the docker container inspect command to get
information about the volumes that have been created, among other
things. Use this command to just get the volume information:

$ docker inspect --format '{{json .Mounts}}' \

my-mongo | jq .

The preceding command should output something like this:

» docker inspect —format '{{json .Mounts}}' \
my-mongo | jiq

[
{ T

C : »
": true,

Figure 5.17: Inspecting the MongoDB volumes



The Source field gives us the path to the host directory, where the data
produced by MongoDB inside the container will be stored. This way,
your backup operators will know which folders to back up in production.

Before you leave, clean up the MongoDB container with the following
command:

$ docker rm -f my-mongo

That's it for the moment concerning volumes. In the next section, we will
explore how we can configure applications running in containers and the
container image build process itself.

Configuring containers

More often than not, we need to provide some configuration to the
application running inside a container. The configuration is often used to
allow the same container to run in very different environments, such as in
development, test, staging, or production environments. In Linux,
configuration values are often provided via environment variables.

We have learned that an application running inside a container is completely
shielded from its host environment. Thus, the environment variables that we
see on the host are different from the ones that we see within a container.

Let's prove this by looking at what is defined on our host:

1. Use this command to display a list of all environment variables defined
for your Terminal session:

On the author's macOS, they see something like this (shortened):

COLORTERM=truecolor

COMMAND MODE=unix2003

HOME=/Users/gabriel

HOMEBREW_CEL /opt/homebrew/Cellar

HOMEBREW_PRE pt/homebrew

HOMEBREW_REP( Y=/opt/homebrew
INFOPATH=/opt/homebrew/share/info:/opt/homebrew/...:

LANG=en GB.UTF-8




LESS=-R

LOGNAME=gabriel

2. Next, let's run a shell inside an Alpine container:

a. Run the container with this command:

$ docker container run --rm -it alpine /bin/sh

b. Just as a reminder, we are using the --rm command-line parameter
so that we do not have to remove the dangling container once we
stop it.

c. Then, list the environment variables we can see there with this
command:

/ # export

This should produce the following output:

» docker container run —rm -it alpine /bin/sh
/ # export

export HOME='/root'

export HOSTMNAME='ab3ed439e1249'

export PATH='/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin'
export PwD='/'

export SHLVL='1"

export TERM='xterm'

/ #11

Figure 5.18: Environment variable inside an Alpine container

The preceding output is different than what we saw directly on the host.
It is more proof that a container offers a sandboxed environment,
distinct from the host environment to the user.

3. Hit Ctrl + D to leave and stop the Alpine container.

Next, let's define environment variables for containers.

Defining environment variables for containers

Now, the good thing is that we can pass some configuration values into the
container at start time. We can use the --env (or the short form, -e) parameter
in the form of --env <key>=<value> to do so, where <key> is the name of the
environment variable and <value> represents the value to be associated with
that variable. Let's assume we want the app thatis to be run in our container



to have access to an environment variable called LoG_DIR, with a value of
/var/log/my-log. We can do so with this command:

S docker container run --rm -it \

--env LOG DIR=/var/log/my-log \

alpine /bin/sh

The preceding code starts a shell in an Alpine container and defines the
requested environment inside the running container. To prove that this is
true, we can execute this command inside the Alpine container:

/ # export | grep LOG_DIR

The output should be as follows:

export LOG DIR='/var/log/my-log'

The output looks as expected. We now have the requested environment
variable with the correct value available inside the container. We can, of
course, define more than just one environment variable when we run a
container. We just need to repeat the --env (or -e) parameter. Have a look at
this sample:

S docker container run --rm -it \

v LOG_DIR=/var/log/my-log \

alpine /bin/sh

After running the preceding command, we are left at the command prompt
inside the Alpine container:

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Let's list the environment variables with the following command:

/ # export | grep LOG

We will see the following:



> docker container run ——rm -it \
—env LOG_DIR=/var/log/my-Llog \
—env MAX_LOG_FILES=5 \
——env MAX LOG SIZE=1G \
alpine /bin/sh

/ # export | grep LOG

export LOG_DIR='/var/log/my-log’
export MAX_LOG_FILES='5"

export MAX_LOG_SIZE='1G"

/ # 1

Figure 5.19: Environment variables defined via the --env parameter

Now, let's look at situations where we have many environment variables to
configure.

Using configuration files

Complex applications can have many environment variables to configure, and
thus, our command to run the corresponding container can quickly become
unwieldy. For this purpose, Docker allows us to pass a collection of
environment variable definitions as a file. We have the --env-file parameter
in the docker container run command for this purpose.

Let's try this out, as follows:

1. Navigate to the source folder for chapter 5 that we created at the
beginning of this chapter:

$ cd ~/The-Ultimate-Docker-Container-Book-v4

$ cd chapter-05

2. Create a subfolder, config-file, and navigate to it, like this:

$ mkdir config-file && cd config-file

3. Use your favorite editor to create a file called development.config in this
folder. Add the following content to the file and save it, as follows:



LOG_DIR=/var/log/my-log

MAX LOG_FILES=5

MAX LOG SIZE=1G

Notice how we have the definition of a single environment variable per
line in <key>=<value> format, where, once again, <key> is the name of the

environment variable, and <value> represents the value to be associated
with that variable.

4. Now, from within the config-file subfolder, let's run an Alpine
container, pass the file as an environment file, and run the export
command inside the container to verify that the variables listed inside
the file have indeed been created as environment variables inside the
container, like this:

rm -it \

opment.config \

alpine sh -c "export | grep LOG"

Indeed, the variables are defined, as we can see in the output generated:

> docker container run —-rm -it \
——env-file ./development.config \
alpine sh -c "export | grep LOG"

export LOG_DIR='/var/log/my-log’
export MAX_LOG_FILES='5"
export MAX_LOG_SIZE='1G'

Figure 5.20: Using a file to define environment variables

This is exactly what we expected.

Next, let's look at how to define default values for environment variables that
are valid for all container instances of a given Docker image.

Defining environment variables in container
images



Sometimes, we want to define some default value for an environment variable
that must be present in each container instance of a given container image.
We can do so in the Dockerfile that is used to create that image by following
these steps:

1. Navigate to the source folder for chapter 5that we created at the
beginning of this chapter:

d ~/The-Ultimate-Docker-Container-Book-v4

S
$
$ cd chapter-05

2. Create a subfolder called config-in-image and navigate to it, like this:

$ mkdir config-in-image && cd config-in-image

3. Use your favorite editor to create a file called Dockerfile in the config-in-
image subfolder. Add the following content to the file and save it:

FROM alpine:latest
ENV LOG_DIR=/var/log/my-log
ENV MAX LOG_FILES=5

ENV MAX LOG SIZE=1G

4. Create a container image called my-alpine using the preceding Dockerfile,
as follows:

$ docker image build -t my-alpine .

Note
Don't forget the period at the end of the preceding line!

1. Run a container instance from this image that outputs the environment
variables defined inside the container, like this:

$ docker container run --rm -it \

my-alpine sh -c "export | grep LOG"

You should see the following in your output:



> docker container run —rm -it \
my-alpine sh -c "export | grep LOG"

export LOG_DIR='/var/log/my-log'
export MAX_LOG_FILES='5"
export MAX_LOG_SIZE='1G"

Figure 5.21: Environment variables as defined in Docker image
This is exactly what we expected.

2. The good thing, though, is that we are not stuck with those variable
values at all. We can override one or many of them by using the --env
parameter in the docker container run command. Use this command:

$ docker container run --rm -it \
--env MAX LOG_SIZE=2G \
--—env MAX_LOG_FILES=10 \

my-alpine sh -c "export | grep LOG"

3. Now, have a look at the following command and its output:

> docker container run —rm -it \
—env MAX_LOG_SIZE=2G \
—env MAX_LOG_FILES=10 \
my—alpine sh -c "export | grep LOG"

export LOG_DIR='/var/log/my-log’
export MAX_LOG_FILES='10'
export MAX_LOG_SIZE='2G'

Figure 5.22: Overridden environment variables

4. We can also override default values by using environment files together
with the --env-file parameter in the docker container run command.
Please try it out for yourself.

In the next section, we are going to introduce environment variables that are
used at the build time of a Docker image.



Environment variables at build time

Sometimes, we want to be able to define some environment variables that are
valid at the time we build a container image. Imagine that you want to define
a BASE_IMAGE_VERSION environment variable that shall then be used as a
parameter in your Dockerfile. Imagine the following Dockerfile:

ARG BASE_IMAGE VERSION=12.7-stretch

FROM node:${BASE IMAGE VERSION}

WOR! /app
COPY packages.json .
RUN npm install

oY o o

CMD npm start

We are using the ARG keyword to define a default value that is used each time
we build an image from the preceding Dockerfile. In this case, that means that
our image uses the node:12.7-stretch base image.

Now, if we want to create a special image for, say, testing purposes, we can
override this variable at image build time using the --build-arg parameter, as
follows:

$ docker image build \

--build-arg BASE_IMAGE VERSION=12.7-alpine \

-t my-node-app-test .

In this case, the resulting my-node-app-test:latest image will be built from the
node:12.7-alpine base image and not from the node:12.7-stretch default
image.

To summarize, environment variables defined via --env or --env-file are valid
at container runtime. Variables defined with ARG in the Dockerfile or --build-
argin the docker container build command are valid at container image build
time. The former is used to configure an application running inside a
container, while the latter is used to parameterize the container image build
process.

In the next and last section of this chapter, we will explore the topic of
persistent storage and stateful container patterns.



Persistent storage and stateful container
patterns

Containers are inherently ephemeral; they are designed to be stateless and
easily replaceable. However, many real-world applications require the ability
to persist data beyond the lifecycle of a single container instance. This
necessitates the implementation of persistent storage solutions and patterns
that support stateful behavior within containerized environments.

Understanding persistent storage in Docker

In Docker, persistent storage is achieved through volumes and bind mounts:

e Volumes: Managed by Docker, volumes are stored in a part of the host
filesystem that is managed by Docker (/var/1ib/docker/volumes/ on
Linux). They are the preferred mechanism for persisting data generated
by and used by Docker containers.

e Bind mounts: These mount a file or directory from the host filesystem
into the container. While they offer more control, they are dependent on
the directory structure and OS of the host machine.

Volumes are generally recommended over bind mounts due to their
portability and management features, though bind mounts are often used by
software engineers during the development process to dynamically mount
code into their application container.

Patterns for managing stateful containers

Managing stateful applications in containers involves specific patterns to
ensure data persistence and consistency:

e Data volume containers: An older pattern where a container is dedicated
solely to holding volumes to be shared with other containers. This
pattern has largely been replaced by named volumes.

e Named volumes: Creating and managing volumes independently of
containers allows for better data persistence and sharing across multiple
containers.

o StatefulSets (in Kubernetes): For orchestrated environments — as we will
discuss in section 3 of this book, StatefulSets manage the deployment



and scaling of a set of Pods, and provide guarantees about the ordering
and uniqueness of these Pods. Each Pod gets its own persistent volume.

e Volume plugins: Docker supports volume plugins that allow volumes to
be stored on remote hosts or cloud providers, enabling data persistence
across different environments.

Best practices for persistent storage

We recommend the following best practices when dealing with persistent
storage:

* Use volumes for persistence: Prefer Docker-managed volumes over bind
mounts for better portability and management

e Backup and restore: Implement regular backup strategies for volumes to
prevent data loss

» Monitor storage usage: Keep an eye on storage consumption to avoid
running out of space, which can cause containers to fail

 Security considerations: Ensure that sensitive data stored in volumes is
properly secured, using appropriate permissions and, if necessary,
encryption

e Use volume drivers: Leverage volume drivers for integrating with
external storage systems, providing flexibility and scalability

By adhering to these practices and understanding the patterns for managing
stateful containers, we can effectively handle persistent data in Docker
environments, ensuring data durability and application reliability.

With this, we have come to the end of this chapter.

Summary

In this chapter, we have explored the essential concepts related to Docker data
volumes and configuration, highlighting their critical role in containerized
applications. You learned how to effectively create, mount, and manage
Docker volumes to ensure data persistence across container lifecycles. We
discussed the practical approaches to sharing data between containers and
the host system, providing you with the skills necessary to implement robust
container solutions.



You also mastered container configuration techniques, such as the use of
environment variables and configuration files. These powerful mechanisms
allow applications to be flexible and adaptable across different environments,
enhancing maintainability and consistency.

Lastly, we introduced the topic of persistent storage and stateful container
patterns. In this section, you learned about the nuances of maintaining
application state and data integrity beyond the ephemeral lifespan of
containers. We examined the critical differences between volumes and bind
mounts, emphasizing why Docker-managed volumes are generally preferable.
You discovered key patterns for managing stateful containers, such as named
volumes, data volume containers, and Kubernetes StatefulSets. Additionally,
we discussed best practices to ensure secure, scalable, and reliable persistent
storage in your Docker and orchestration environments.

Equipped with this knowledge, you're now ready to handle complex
containerized applications that require persistent data storage and stateful
management patterns, enabling you to build and deploy enterprise-grade
applications confidently.

In the next chapter, we are going to introduce techniques commonly used to
allow a developer to evolve, modify, debug, and test their code while running
in a container.

Further reading
The following articles provide more in-depth information:

o Usevolumes: http://dockr.ly/2EUjTml

* Manage data in Docker: http://dockr.1ly/2EhBpzD

 Docker volumes on Play with Docker (PWD): http://bit.ly/2sjIfDj

* nsenter—Linux man page, at https://bit.1ly/2MEPGen

o Set environment variables: https://docs.docker.com/reference/cli/docker/
e Understanding how ARG and FROM interact: https://dockr.ly/20rhzZgx

Questions

Try to answer the following questions to assess your learning progress:


https://http//dockr.ly/2EUjTml
https://http//dockr.ly/2EhBpzD
https://http//bit.ly/2sjIfDj
https://bit.ly/2MEPG0n
https://docs.docker.com/reference/cli/docker/
https://dockr.ly/2OrhZgx
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10.

11.
12.
13.
14.

15.

. What is the primary difference between Docker volumes and bind

mounts?

. Why are volumes generally recommended over bind mounts for data

persistence in Docker?

. How does Docker ensure data persistence when a container is removed?
. What is a common use case for bind mounts in Docker?
. Can you share a volume between multiple containers? If so, how?

. How would you create a named data volume with a name such as my-

products using the default driver?

. How would you run a container using the Alpine image and mount the

my-products volume in read-only mode into the /data container folder?

. How would you locate the folder that is associated with the my-products

volume and navigate to it? Also, how would you create a file, sample.txt,
with some content?

. How would you run another Alpine container where you mount the my-

products volume to the /app-data folder, in read/write mode? Inside this
container, navigate to the /app-data folder and create a hello.txt file
with some content.

How would you mount a host volume — for example, ~/my-project —into
a container?

How would you remove all unused volumes from your system?

How can you inspect the details of a Docker volume?

What are the implications of using bind mounts regarding security?
The list of environment variables that an application running in a

container sees is the same as if the application were to run directly on
the host.

a. True
b. False

Your application that shall run in a container needs a huge list of
environment variables for configuration. What is the simplest method to
run a container with your application and provide all this information to
it?



Answers
Here are the answers to this chapter's questions:

1. Docker volumes are managed by Docker and stored in a part of the host
filesystem that Docker manages (/var/1lib/docker/volumes/ on Linux).
They are the preferred mechanism for persisting data. Bind mounts, on
the other hand, mount a file or directory from the host filesystem into
the container and rely on the host's directory structure, making them
less portable.

2. Volumes are managed by Docker, offering better portability, easier
backup and restore processes, and safer sharing among containers. They
are less dependent on the host's directory structure and provide a more
consistent environment across different systems.

3. By using volumes, Docker decouples the data from the container's
lifecycle. Even if a container is removed, the data stored in a volume
persists and can be attached to a new container.

4. Bind mounts are commonly used in development environments to
mount source code or configuration files from the host into the
container, allowing real-time code changes without rebuilding the
image.

5. Yes, Docker volumes can be shared between multiple containers by
specifying the same volume name in the -v or --mount flag when
running each container. This allows containers to read from and write to
the same data store.

6. To create a named volume, run the following command:

$ docker volume create my-products

7. Execute the following command:

$ docker container run -it --rm \
-v my-products:/data:ro \

alpine /bin/sh

8. To achieve this result, do this:

a. To get the path on the host for the volume, use this command:

S docker volume inspect my-products | grep Mountpoint




This should result in the following output:

n
Mountpoint": "/var/lib/docker/volumes/my-products/ data"

b. Now, execute the following command to run a container and
execute nsenter within it:

$ docker container run -it --privileged --pid=host \

debian nsenter -t 1 -m -u -n -i sh

c. Navigate to the folder containing the data for the my-products
volume:

/ # cd /var/lib/docker/volumes/my-products/ data

d. Create a file containing the text ""I love Docker"" within this
folder:

" > sample.txt

e. Exit nsenter and its container by pressing Ctrl + D.

f. Execute the following command to verify that the file generated in
the host filesystem is indeed part of the volume and accessible to
the container to which we'll mount this volume:

S docker container run --rm \

--volume my-products:/data \

alpine 1ls -1 /data

The output of the preceding command should look similar to this:

total 4

—rw-r—--r--— root 14 Dec 4 17:35 sample.txt

And indeed, we can see the file.

g. Optional: Run a modified version of the command to output the
content of the sample.txt file.

9. Execute the following command:

$ docker run -it --rm -v my-products:/data:ro \

alpine /bin/sh




/ # cd /data

/data # cat sample.txt

In another Terminal, execute this command:

$ docker run -it --rm -v my-products:/app-data \
alpine /bin/sh

/ # cd /app-data

/app-data # echo "Hello other container" > hello.txt

/app-data # exit

10. Execute a command such as this:

S docker container run -it --rm \

-v $HOME/my-project:/app/data \

alpine /bin/sh

11. Exit both containers and then, back on the host, execute this command:

$ docker volume prune

12. Use this command:

$ docker volume inspect my volume

This provides detailed information about the volume, including its
mount point and usage.

13. Bind mounts can pose security risks because they provide the container
with access to the host's filesystem. If not properly managed, this can
lead to unauthorized access or modification of host files. It's essential to
set appropriate permissions and use read-only mounts when necessary.

14. The answer is false (B). Each container is a sandbox and thus has its very
own environment.

15. Collect all environment variables and their respective values in a
configuration file, which you then provide to the container with the --
env-file command-line parameter in the docker container run
command, like so:

$ docker container run --rm -it \

-—env-file ./development.config \

alpine sh -c "export"
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