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What Are Containers and Why
Should I Use Them?



Join our book community on Discord:

https://packt.link/mqfS2

This �rst chapter will introduce you to the world of containers, showing how

they streamline the modern software supply chain and address the security

challenges that often arise with traditional deployment models. We'll assume

no or minimal prior knowledge of containers, so our �rst steps focus on

illustrating the friction points in legacy work�ows and demonstrating how

containers signi�cantly reduce that friction. Building on this foundation, we'll

explore both the classic ecosystem—where upstream OSS components

(collectively known as Moby) serve as the building blocks behind familiar

Docker products—and the latest containerization trends that have emerged

or solidi�ed since 2022, the time when the last edition of the book was

written. You'll learn not only why containers were a revolutionary concept

when they �rst appeared but also how features such as rootless operation

modes, supply chain security enhancements, and new orchestration

techniques are shaping today's container landscape. By the end of this

chapter, you'll understand how containers are assembled and why they

matter more than ever in delivering secure, portable applications.

The chapter covers the following topics:

What are containers?

Why are containers important?

What's the bene�t of using containers for me or my company?

The Moby project

Docker products

Container architecture

What's new in containerization

https://packt.link/mqfS2


After completing this chapter, you will be able to do the following:

Explain what containers are to an interested layperson, using everyday

analogies such as physical cargo containers versus bulk shipping

Justify why containers are so important by likening their approach to the

difference between apartment homes and single-family homes, or

similar simpli�ed examples

Name at least four upstream OSS components (united under Moby) that

power Docker products such as Docker Desktop

Draw a high-level sketch of the Docker container architecture to

illustrate how layered images and namespaces �t together

Identify the recent developments (post-2022) in containerization,

including new security measures, rootless modes, and enhanced

Kubernetes debugging, and explain how they continue to shape modern

deployments

Let's get started!

What are containers?
A software container is a pretty abstract thing, so it might help if we start with

an analogy that should be pretty familiar to most of you. The analogy is a

shipping container in the transportation industry. Throughout history, people

have been transporting goods from one location to another by various means.

Before the invention of the wheel, goods would most probably have been

transported in bags, baskets, or chests on the shoulders of humans

themselves, or they might have used animals such as donkeys, camels, or

elephants to transport them. With the invention of the wheel, transportation

became a bit more ef�cient as humans built roads along which they could

move their carts. Many more goods could be transported at a time. When the

�rst steam-driven machines and, later, gasoline-driven engines were

introduced, transportation became even more powerful. We now transport

huge amounts of goods on planes, trains, ships, and trucks. At the same time,

the types of goods became more and more diverse, and sometimes complex to

handle. In all these thousands of years, one thing hasn't changed, and that is

the necessity to unload goods at a target location and maybe load them onto

another means of transportation. Take, for example, a farmer bringing a cart



full of apples to a central train station where the apples are then loaded onto a

train, together with all the apples from many other farmers. Or think of a

winemaker bringing their barrels of wine with a truck to the port, where they

are unloaded and then transferred to a ship that will transport those barrels

overseas.

This unloading from one means of transportation and loading onto another

means of transportation was a really complex and tedious process. Every type

of product was packaged in its own way and thus had to be handled in its own

particular way. Also, loose goods faced the risk of being stolen by unethical

workers or damaged in the process of being handled.

Figure 1.1 – Sailors unloading goods from a ship



Then, containers came along, and they totally revolutionized the

transportation industry. A container is just a metallic box with standardized

dimensions. The length, width, and height of each container are the same.

This is a very important point. Without the world agreeing on a standard size,

the whole container thing would not have been as successful as it is now.

Now, with standardized containers, companies that want to have their goods

transported from A to B package those goods into these containers. Then, they

call a shipper, who comes with a standardized means of transportation. This

can be a truck that can load a container, or a train whose wagons can each

transport one or several containers. Finally, we have ships that are specialized

in transporting huge numbers of containers. Shippers never need to unpack

and repackage goods. For a shipper, a container is just a black box, and they

are not interested in what is in it, nor should they care in most cases. It is just

a big iron box with standard dimensions. Packaging goods into containers is

now fully delegated to the parties who want to have their goods shipped, and

they should know how to handle and package those goods. Since all

containers have the same agreed-upon shape and dimensions, shippers can

use standardized tools to handle containers—that is, cranes that unload

containers, say from a train or a truck, and load them onto a ship, and vice

versa. One type of crane is enough to handle all the containers that come

along over time. Also, the means of transportation can be standardized, such

as container ships, trucks, and trains. Because of all this standardization, all

the processes in and around shipping goods could also be standardized and

thus made much more ef�cient than they were before the introduction of

containers.



Figure 1.2 – Container ship being loaded in a port

Now, you should have a good understanding of why shipping containers are

so important and why they revolutionized the whole transportation industry.

I chose this analogy purposefully since the software containers that we are

going to introduce here ful�ll the exact same role in the so-called software

supply chain as shipping containers do in the supply chain of physical goods.

Let's then have a look at what this whole thing means translated to the IT

industry and software development, shall we? In the old days, developers

would develop new applications. Once an application was completed in their

eyes, they would hand that application over to the operations engineers, who

were then supposed to install it on the production servers and get it running.

If the operations engineers were lucky, they even got a somewhat accurate

document with installation instructions from the developers. So far, so good,



and life was easy. But things got a bit out of hand when, in an enterprise, there

were many teams of developers that created quite different types of

applications, yet all of them needed to be installed on the same production

servers and kept running there. Usually, each application has some external

dependencies, such as the framework it was built on, the libraries it used, and

so on. Sometimes, two applications use the same framework but in different

versions that might or might not be compatible with each other. Our

operations engineers' lives became much harder over time. They had to be

really creative with how they loaded their ships, that is, their servers, with

different applications without breaking something. Installing a new version of

a certain application was now a complex project on its own, and often needed

months of planning and testing beforehand. In other words, there was a lot of

friction in the software supply chain.

But these days, companies rely more and more on software, and the release

cycles need to become shorter and shorter. Companies cannot afford to just

release application updates once or twice a year anymore. Applications need

to be updated in a matter of weeks or days, or sometimes even multiple times

per day. Companies that do not comply risk going out of business due to the

lack of agility. So, what's the solution? One of the �rst approaches was to use

virtual machines (VMs). Instead of running multiple applications all on the

same server, companies would package and run a single application on each

VM. With this, all the compatibility problems were gone, and life seemed to be

good again. Unfortunately, that happiness didn't last long. VMs are pretty

heavy beasts on their own since they all contain a full-blown operating

system, such as Linux or Windows Server, and all that for just a single

application. This is just as if you were in the transportation industry and were

using a whole ship just to transport a single truckload of bananas. What a

waste! That could never be pro�table. The ultimate solution to this problem

was to provide something that is much more lightweight than VMs but is also

able to perfectly encapsulate the goods it needs to transport. Here, the goods

are the actual application that has been written by our developers, plus—and

this is important—all the external dependencies of the application, such as its

framework, libraries, con�gurations, and more. This holy grail of a software

packaging mechanism is the Docker container.



Developers use Docker containers to package their applications, frameworks,

and libraries into them, and then they ship those containers to the testers or

operations engineers. For testers and operations engineers, a container is just

a black box. It is a standardized black box, though. All containers, no matter

what application runs inside them, can be treated equally. The engineers

know that if any container runs on their servers, then any other containers

should run too. And this is actually true, apart from some edge cases, which

always exist. Thus, Docker containers are a means to package applications

and their dependencies in a standardized way. Docker then coined the phrase

Build, ship, and run anywhere.

Why are containers important?
These days, the time between new releases of an application becomes shorter

and shorter, yet the software itself does not become any simpler. On the

contrary, software projects increase in complexity. Thus, we need a way to

tame the beast and simplify the software supply chain. Also, every day, we

hear that cyberattacks are on the rise. Many well-known companies are and

have been affected by security breaches. Highly sensitive customer data gets

stolen during such events, such as social security numbers, credit card

information, health-related information, and more. Not only is customer data

compromised, but sensitive company secrets are stolen, too. Containers can

help in many ways. In a published report, Gartner found that applications

running in a container are more secure than their counterparts that are not

running in a container. Containers use Linux security primitives such as Linux

kernel namespaces to sandbox different applications running on the same

computer and control groups (cgroups) to avoid the noisy-neighbor problem,

where one bad application is using all the available resources of a server and

starving all other applications. Since container images are immutable, as we

will learn later, it is easy to have them scanned for common vulnerabilities

and exposures (CVEs), and in doing so, increase the overall security of our

applications. Another way to make our software supply chain more secure is

to have our containers use content trust. Content trust ensures that the

author of a container image is who they say they are and that the consumer of

the container image has a guarantee that the image has not been tampered

with in transit. The latter is known as a man-in-the-middle (MITM) attack.



Everything I have just said is, of course, technically also possible without

using containers, but since containers introduce a globally accepted standard,

they make it so much easier to implement these best practices and enforce

them. OK, but security is not the only reason containers are important. There

are other reasons, too. One is the fact that containers make it easy to simulate

a production-like environment, even on a developer's laptop. If we can

containerize any application, then we can also containerize, say, a database

such as Oracle, PostgreSQL, or MS SQL Server. Now, everyone who has ever

had to install an Oracle database on a computer knows that this is not the

easiest thing to do, and it takes up a lot of precious space on your computer.

You would not want to do that to your development laptop just to test

whether the application you developed really works end-to-end. With

containers at hand, we can run a full-blown relational database in a container

as easily as saying one, two, three. And when we are done with testing, we can

just stop and delete the container, and the database will be gone, without

leaving a single trace on our computer. Since containers are very lean

compared to VMs, it is common to have many containers running at the same

time on a developer's laptop without overwhelming the laptop. A third reason

containers are important is that operators can �nally concentrate on what

they are good at—provisioning the infrastructure and running and

monitoring applications in production. When the applications that must run

on a production system are all containerized, then operators can start to

standardize their infrastructure. Every server becomes just another Docker

host. No special libraries or frameworks need to be installed on those servers

—just an OS and a container runtime such as Docker. Furthermore, operators

do not have to have intimate knowledge of the internals of applications

anymore, since those applications run self-contained in containers that ought

to look like black boxes to them, like how shipping containers look to

personnel in the transportation industry.

What is the benefit of using containers for me
or my company?
Somebody once said, "...today every company of a certain size has to acknowledge

that they need to be a software company..."." In this sense, a modern bank is a

software company that happens to specialize in the business of �nance.



Software runs all businesses, period. As every company becomes a software

company, there is a need to establish a software supply chain. For the

company to remain competitive, its software supply chain must be secure and

ef�cient. Ef�ciency can be achieved through thorough automation and

standardization. But in all three areas—security, automation, and

standardization—containers have been shown to shine. Large and well-

known enterprises have reported that when containerizing existing legacy

applications (many call them traditional applications) and establishing a fully

automated software supply chain based on containers, they can reduce the

cost for the maintenance of those mission-critical applications by a factor of

50% to 60%, and they can reduce the time between new releases of these

traditional applications by up to 90%. That being said, the adoption of

container technologies saves these companies a lot of money, and at the same

time, it speeds up the development process and reduces the time to market.

The Moby project
Originally, when Docker (the company) introduced Docker containers,

everything was open source. Docker did not have any commercial products

then. Docker Engine, which the company developed, was a monolithic piece

of software. It contained many logical parts, such as the container runtime, a

network library, a RESTful (REST) API, a command-line interface, and much

more. Other vendors or projects, such as Red Hat or Kubernetes, were using

Docker Engine in their own products, but most of the time, they were only

using part of its functionality. For example, Kubernetes did not use the Docker

network library for Docker Engine but provided its own way of networking.

Red Hat, in turn, did not update Docker Engine frequently and preferred to

apply unof�cial patches to older versions of Docker Engine, yet they still

called it Docker Engine.

Out of all these reasons, and many more, the idea emerged that Docker had to

do something to clearly separate Docker's open source part from Docker's

commercial part. Furthermore, the company wanted to prevent competitors

from using and abusing the name Docker for their own gains. This was the

main reason the Moby project was born. It serves as an umbrella for most of

the open source components Docker developed and continues to develop.

These open source projects do not carry the name Docker anymore. The Moby



project provides components used for image management, secret

management, con�guration management, and networking and provisioning.

Also, part of the Moby project is special Moby tools that are, for example, used

to assemble components into runnable artifacts. Some components that

technically belong to the Moby project have been donated by Docker to the

Cloud Native Computing Foundation (CNCF) and thus do not appear in the

list of components anymore. The most prominent ones are notary, containerd,

and runc, where the �rst is used for content trust, and the latter two form the

container runtime.

In the words of Docker, "... Moby is an open framework created by Docker to

assemble specialized container systems without reinventing the wheel. It provides a

'"Lego set'" of dozens of standard components and a framework for assembling them

into custom platforms...."

Docker products
In the past, up until 2019, Docker separated its product lines into two

segments. There was the Community Edition (CE), which was closed source

yet completely free, and then there was the Enterprise Edition (EE), which

was also closed source and needed to be licensed yearly. These enterprise

products were backed by 24/7 support and were supported by bug �xes.

In 2019, Docker felt that what they had were two very distinct and different

businesses. Consequently, they split away the EE and sold it to Mirantis.

Docker itself wanted to refocus on developers and provide them with optimal

tools and support to build containerized applications.

Docker Desktop
Part of the Docker offering includes products such as Docker Toolbox and

Docker Desktop, with their editions for macOS, Windows, and Linux. All these

products are mainly targeted at developers. Docker Desktop is an easy-to-

install desktop application that can be used to build, debug, and test

dockerized applications or services on a macOS, Windows, or Linux machine.

Docker Desktop is a complete development environment that is deeply

integrated with the hypervisor framework, network, and �lesystem of the

respective underlying operating system. These tools are the fastest and most

reliable ways to run Docker on macOS, Windows, or Linux.



Docker Hub
Docker Hub is the most popular service for �nding and sharing container

images. It is possible to create individual, user-speci�c accounts and

organizational accounts under which Docker images can be uploaded and

shared inside a team, an organization, or with the wider public. Public

accounts are free while private accounts require one of several commercial

licenses. Later in this book, we will use Docker Hub to download existing

Docker images and upload and share our own custom Docker images.

Docker EE
Docker sold its Enterprise Edition (Docker EE) to Mirantis in November 2019

as part of a strategic realignment. Despite pioneering container technology,

Docker, Inc. found itself under �nancial strain as the container ecosystem

rapidly shifted toward Kubernetes. Docker EE—comprising Universal Control

Plane (UCP), Docker Trusted Registry (DTR), and the enterprise-speci�c

engine—no longer �tted Docker's evolving focus on developer work�ows,

Docker Desktop, and the Docker Hub ecosystem.

By transferring Docker EE to Mirantis, Docker obtained funding and freedom

to concentrate on developer tooling and collaboration, while Mirantis

acquired the enterprise business and its customer base, as well as engineers

and IP. Mirantis continues to build upon Docker EE's core technologies,

integrating them into its own Kubernetes-focused solutions. Meanwhile,

Docker thrives as a primary driver of developer-centric container tooling,

demonstrating how the container market has matured and specialized over

time.

Note

Docker Toolbox has been deprecated and is no longer in active

development. Docker recommends using Docker Desktop instead.

NOTE

Docker Swarm

Docker Swarm is Docker's native container orchestration feature that

comes integrated with the Docker Engine—it is not a separate

product. It provides a robust and �exible platform for deploying and

NOTE



Container architecture
Now, let us discuss how a system that can run Docker containers is designed

at a high level. The following diagram illustrates what a computer on which

Docker has been installed looks like. Note that a computer that has Docker

installed on it is often called a Docker host because it can run or host Docker

containers:

Figure 1.3 – High-level architecture diagram of Docker Engine

In the preceding diagram, we can see three essential parts:

At the bottom, we have the Linux operating system

In the middle, we have the container runtime

At the top, we have Docker Engine

Containers are only possible because the Linux OS supplies some primitives,

such as namespaces, control groups, layer capabilities, and more, all of which

are used in a speci�c way by the container runtime and Docker Engine. Linux

managing containerized applications at scale. With Swarm mode

enabled, developers and operators can build, deploy, and operate

distributed applications using the same familiar Docker CLI,

bene�tting from built-in features such as load balancing, service

discovery, rolling updates, and secure multi-host networking.



kernel namespaces, such as process ID (pid) namespaces, or network (net)

namespaces, allow Docker to encapsulate or sandbox processes that run

inside the container. Control groups make sure that containers do not suffer

from noisy-neighbor syndrome, where a single application running in a

container can consume most or all the available resources of the whole Docker

host. Control groups allow Docker to limit the resources, such as CPU time or

the amount of RAM, that each container is allocated. The container runtime

on a Docker host consists of containerd and runc. The latter is the low-level

functionality of the container runtime, such as container creation or

management, while containerd, which is based on runc, provides higher-level

functionality, such as image management, networking capabilities, or

extensibility via plugins. Both are open source and have been donated by

Docker to the CNCF. The container runtime is responsible for the whole life

cycle of a container. It pulls a container image (which is the template for a

container) from a registry, if necessary, creates a container from that image,

initializes and runs the container, and eventually stops and removes the

container from the system when asked. Docker Engine provides additional

functionality on top of the container runtime, such as network libraries or

support for plugins. It also provides a REST interface over which all container

operations can be automated. The Docker command-line interface (CLI) that

we will use often in this book is one of the consumers of this REST interface.

What's new in containerization
Although containers have been around for nearly a decade, the ecosystem has

not been standing still. Over the past few years, you've likely seen an

explosion in complementary tools, runtimes, and security features. Not all of

these are strictly "new"—some debuted earlier in beta form—but 2022

onward has been a tipping point, pushing once-experimental ideas �rmly into

mainstream adoption. Here's a summary of the standout developments that

have truly gained ground in that timeframe.

Enhanced supply chain security
One of the biggest stories in containerization since 2022 has been the shift to

deeper security. Gone are the days when we simply scanned images after



shipping them. Now, organizations demand full transparency and traceability

from the earliest point in the supply chain. A few highlights are as follows:

Image signing and veri�cation: Tools such as Notary v2 and Cosign are

moving beyond prototypes and �nding real usage in production

pipelines. They let you sign your images cryptographically so that any

downstream user (whether developer, QA engineer, or operator) can be

certain the image hasn't been tampered with along the way. Since 2022,

these signing work�ows have become far more common, fueled by high-

pro�le supply chain attacks that exposed just how vulnerable unveri�ed

images can be.

SBOM generation: While software bills of materials (SBOMs) were a

talking point back in 2021, they truly landed on the mainstream radar by

mid-2022, especially with developer-friendly tools such as Syft, Anchore,

and a variety of plugins for existing CI/CD solutions. The typical

approach is to generate an SBOM at build time, capturing exactly which

versions of libraries and frameworks went into your container. This

"ingredient list" makes it much easier to react to newly discovered

vulnerabilities—or track down dangerous dependencies such as log4j.

Debugging and operations in Kubernetes
As more enterprises transitioned to Kubernetes at scale, operational

work�ows matured. By 2022, one feature in particular (namely, ephemeral

containers) began appearing in everyday cluster operations.

Originally introduced before 2022, ephemeral containers gained real traction

once folks realized how straightforward it is to attach a debugging container

to a Pod already running in production. You can spin up a short-lived

container image with the needed diagnostic tools (think: cURL, netcat,

specialized log scrapers) and run them right alongside your main application

process. By 2022 and into 2023, ephemeral containers cemented their status

as a go-to mechanism for live troubleshooting without stopping or rebuilding

your entire Pod.

Docker Desktop extensions
Since mid-2022, Docker Desktop gained an Extensions Marketplace, allowing

users to integrate third-party tools directly into the Docker Desktop UI. While



Docker Desktop has long provided a seamless way to build and run containers

locally, these new extensions push it further:

Security scanning extensions: Many teams now adopt Docker Desktop

extensions for image scanning (for instance, the Snyk or Trivy

extensions) right as they're building locally. This shortens feedback

loops, catching vulnerabilities before code ever makes it to a shared

repository.

Multi-service management: Some extensions help you orchestrate and

monitor multiple services, letting you visualize containers or tweak

volumes and networks from a single interface. Because these extensions

are curated on Docker's marketplace, developers can install them with

one click, making for a frictionless setup that even new team members

can handle.

Evolving resource management
Lastly, container engines and orchestrators have kept re�ning how they

handle resource isolation:

cgroups v2 adoption: Although cgroups v2 was initially introduced

earlier, full Docker support and stable usage across major Linux distros

were locked in during 2022. Operators now bene�t from more precise

accounting of CPU, memory, and I/O usage at scale, which is crucial for

multi-tenant environments. Docker's improved stability with cgroups v2

means that if you're running the latest Linux kernels, you can rely on

better insight and control over container performance.

Rootless modes (more mature): Running containers as rootless—thus

mitigating some of the biggest security concerns—saw broader real-

world deployments last year. Formerly considered "experimental,"

rootless Docker modes are now stable enough that companies with strict

security requirements are con�dently rolling them out in production.

While some features are still limited compared to traditional Docker, the

overall experience for rootless has become smoother and far better

documented.

Where do we go from here?



Altogether, these developments show that the container world no longer

revolves solely around a single Docker Engine or a single orchestrator. Instead,

we have a rapidly evolving toolkit that covers everything from building more

secure images (complete with SBOMs, signed content, and rootless isolation)

to debugging distributed applications in real time (Kubernetes ephemeral

containers). If you're coming from older container setups, you'll notice a

dramatic uptick in built-in security checks, of�cial disclaimers about package

versions, and integrated services that keep watch on every step of your build-

and-run pipeline.

More than ever, containers aren't just a developer convenience. They're

cornerstones of resilient, auditable, and secure systems. As you read on in this

book, you'll see these newer features intersect with our core principles of

Dockerized work�ows—speed, consistency, and the power to easily scale up

or shift environments without the legacy overhead. Keep an eye on these tools

and trends, because we're likely to see even tighter integrations and more

advanced capabilities in the very near future.

Summary
In this chapter, we saw how containers dramatically reduce software supply

chain friction while reinforcing overall security—a bene�t rooted in the open

source Moby components at Docker's core. We also introduced emerging

trends from 2022 onward, such as enhanced image signing and rootless

operation, to show why containers remain a central force in modern

deployments. In the next chapter, we'll go hands-on with Docker commands,

learning how to run, stop, and inspect containers while exploring their basic

anatomy. This is where you'll begin to see these theoretical concepts take

shape in practical, everyday scenarios. Stay tuned!

Further reading
The following is a list of links that lead to more detailed information regarding

the topics we discussed in this chapter:

Docker overview: https://docs.docker.com/engine/docker-overview/

The Moby project: https://mobyproject.org/

Docker products: https://www.docker.com/get-started

https://docs.docker.com/engine/docker-overview/
https://mobyproject.org/
https://www.docker.com/get-started


Docker Desktop: https://www.docker.com/products/docker-desktop/

Cloud-Native Computing Foundation: https://www.cncf.io/

containerd – an industry-standard container runtime:

https://containerd.io/

Mirantis Kubernetes Engine 4:

https://www.mirantis.com/software/mirantis-kubernetes-engine/

Rootless Docker Documentation:

https://docs.docker.com/engine/security/rootless/

Kubernetes Ephemeral Containers:

https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-

containers/

Image Signing and Supply Chain Security:

Notary v2: https://github.com/notaryproject/notaryproject

Cosign / Sigstore: https://docs.sigstore.dev

cgroups v2 in Practice: https://www.kernel.org/doc/html/latest/admin-

guide/cgroup-v2.html

SBOM Generation Tools:

Syft: https://github.com/anchore/syft

CycloneDX: https://cyclonedx.org/

Questions
Please answer the following questions to assess your learning progress:

�. Which statements are correct regarding containers? (Multiple answers

may apply.)

a. A container is essentially the same as a lightweight VM.

b. A container only runs on a Linux host.

c. A container can run exactly one process and no more.

d. The main process in a container always has PID 1 inside that

container's namespace.

e. A container is one or more processes encapsulated by Linux

namespaces and restricted by cgroups.

https://www.docker.com/products/docker-desktop/
https://www.cncf.io/
https://containerd.io/
https://www.mirantis.com/software/mirantis-kubernetes-engine/
https://docs.docker.com/engine/security/rootless/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://github.com/notaryproject/notaryproject
https://docs.sigstore.dev/
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://github.com/anchore/syft
https://cyclonedx.org/


�. In your own words, by using analogies, explain what a container is.

(Hint: Compare it to a physical shipping container or a standardized way

of packaging.)

�. Why are containers considered game-changers in IT? Name three or four

key reasons. (Think about portability, reduced friction, cloud integration,

immutability, and security.)

�. What does it mean when we claim, "If a container runs on a given

platform, then it runs anywhere?" Give two or three reasons why this is

true.

�. True or false? "Docker containers are only useful for modern green�eld

applications based on microservices." Provide a justi�cation for your

answer.

�. How much do enterprises typically save on maintenance when

containerizing their legacy applications?

a. 20%

b. 33%

c. 50%

d. 75%

�. On which two core Linux concepts are containers based? (Hint: This

includes a method to isolate processes and another to control resource

usage.)

�. Which operating systems currently support Docker Desktop? (Note:

Keep in mind recent developments regarding Docker Desktop for Linux.)

�. Name at least two new containerization features or practices that gained

traction from 2022 onward, and brie�y explain why they are important.

(Hint: Consider ephemeral containers for Kubernetes debugging,

rootless Docker, cgroups v2, supply chain security enhancements, and/or

image signing.)

Answers
�. The correct answers are D and E:

d. Within a container's own namespace, the main process has PID 1.



e. A container is one or more processes encapsulated by Linux

namespaces and restricted by cgroups.

�. A helpful analogy compares software containers to the standardized

shipping containers used in global trade. Much like physical containers,

software containers provide a uniform packaging mechanism. Once

developers place an application and its dependencies inside the

container, it can be shipped and run anywhere that supports containers,

simplifying logistics and boosting consistency across environments.

�. The following are the reasons why containers are considered

gamechangers in IT:

They standardize and isolate applications and dependencies,

reducing environment con�icts

They're portable, enabling the same container to run on-premises,

in the cloud, or in hybrid scenarios

They encourage rapid, consistent releases because images are

immutable, and builds are developer-driven

They strengthen security through namespaces, cgroups, and

container-scanning tools

�. A few reasons why the "If a container runs on a given platform, then it

runs anywhere" statement is true are as follows:

A container bundles all dependencies inside its image, making it

self-contained

Containers adhere to widely accepted open standards (OCI),

meaning any conforming engine can run them

They abstract away OS-level quirks, so compatibility issues are

minimal across different hosts or cloud providers

�. This statement is false. Containers are equally bene�cial for existing

monolithic or legacy applications. Enterprises have reported over 50%

cost savings and signi�cantly faster release cycles when containerizing

older systems ("lift and shift")—all without rewriting their application

logic.

�. The correct answer is C. 50% or more. In many published success stories,

organizations have seen at least a 50% reduction in maintenance

overhead, along with faster deployment timelines.



�. Containers rely on Linux namespaces (to isolate processes, network,

users, etc.) and cgroups (to control and limit resource usage).

�. Docker Desktop is supported on macOS, Windows, and Linux (with

of�cial Linux support becoming broadly available more recently).

�. Here are a few new containerization features or practices that gained

traction from 2022 onward, and why they matter:

Kubernetes ephemeral containers: Allow real-time debugging by

attaching short-lived containers to a running Pod, simplifying on-

the-�y troubleshooting

Rootless Docker modes: Let you run Docker with non-root

privileges, reducing security risks and broadening adoption for

compliance-heavy environments

cgroups v2 adoption: Provides �ner-grained resource isolation and

reporting, making multi-tenant workloads more ef�cient and

stable

Image signing with Notary v2 or Cosign: Adds cryptographic

guarantees and traceability to containers, a major step toward

mitigating software supply chain attacks



2

Setting Up a Working Environment



Join our book community on Discord:

https://packt.link/mqfS2

In the previous chapter, we learned what Docker containers are and why

they're important. We learned what kinds of problems containers solve in a

modern software supply chain. In this chapter, we are going to prepare our

personal or working environment to work ef�ciently and effectively with

Docker. We will discuss in detail how to set up an ideal environment for

developers, DevOps, and operators that can be used when working with

Docker containers.

This chapter covers the following topics:

Distinguishing the major operating systems

The Linux command shell

PowerShell for Windows

Installing and using a package manager

Installing Git and cloning the code repository

Choosing and installing a code editor

Installing Docker Desktop on macOS or Windows

Using Docker with WSL 2 on Windows

Installing Docker Toolbox

Enabling Kubernetes on Docker Desktop

Installing Podman

Installing minikube

Installing kind

After completing this chapter, you will be able to do the following:

https://packt.link/mqfS2


Set up a professional-grade development environment for containerized

software development on macOS, Windows, or Linux

Use a package manager, shell, and code editor to con�gure your local

system for working with containers

Install and verify Docker, Podman, and Kubernetes tooling such as

minikube and Kind across all supported platforms

Test your setup end-to-end to ensure containers and Kubernetes

workloads can be built, run, and orchestrated locally without issues

Technical requirements
For this chapter, you will need a laptop or a workstation with either macOS or

Windows, preferably Windows 11 Professional, installed. You should also have

free internet access to download applications and permission to install those

applications on your laptop. It is also possible to follow along with this book if

you have a Linux distribution as your operating system, such as Ubuntu 24.10

or newer. I will try my best to indicate where commands and samples differ

signi�cantly from the ones on macOS, which will be my primary platform

throughout this book.

Distinguishing the major operating systems
While Docker is available for all three major platforms—macOS, Windows,

and Linux—each environment has its nuances. Before we dive deeper into the

details of the chapter, let's give a brief summary of all three operating systems:

macOS
System requirements: Intel-based Macs require macOS 10.14 or above,

while Apple Silicon (M1/M2) chips need macOS 11 or later. Also note that

older versions may need Docker Toolbox.

Preferred installation: Use the dedicated Docker Desktop for Mac

(https://www.docker.com/products/docker-desktop). It seamlessly

integrates with the macOS hypervisor (HyperKit on Intel, Apple's own

hypervisor framework on Apple Silicon).

Package manager: Installing additional tools (such as git or jq) is

typically easiest via Homebrew.

https://www.docker.com/products/docker-desktop


Windows
System requirements: Windows 10 or 11 Professional or Enterprise

editions support Docker Desktop with WSL2 or Hyper-V. Home editions

can often use WSL2 but may require extra con�guration.

Preferred installation: Docker Desktop for Windows uses Hyper-V or

WSL2 as its underlying virtualization. If you're on Windows Home, you

can still install WSL2 and run Docker Desktop with it.

Package manager: Chocolatey (or the newer Windows Package Manager,

winget) simpli�es installing developer tools.

Linux
System requirements: A modern Linux distribution (Ubuntu, Debian,

Fedora, CentOS, etc.). Kernel must support cgroups and namespaces. For

older distros, check Docker's of�cial documentation.

Preferred installation: Install Docker Engine directly from your

distribution's package repositories or use Docker's of�cial repository.

Tools such as minikube may require a speci�c hypervisor (KVM,

VirtualBox).

Package manager: Varies by distribution (apt for Debian/Ubuntu, dnf or

yum for Fedora/CentOS, etc.).

The Linux command shell
Docker containers were �rst developed on Linux for Linux. Hence, it is natural

that the primary command-line tool used to work with Docker, also called a

shell, is a Unix shell; remember, Linux derives from Unix. Most developers use

the Bash shell. On some lightweight Linux distributions, such as Alpine, Bash

is not installed, and consequently, you must use the simpler Bourne shell, just

called sh. Whenever we are working in a Linux environment, such as inside a

container or on a Linux VM, we will use either /bin/bash or /bin/sh, depending

on their availability.

Although Apple's macOS is not a Linux OS, Linux and macOS are both �avors

of Unix and hence support the same set of tools. Among those tools are the

shells. So, when working on macOS, you will probably be using the Bash or

Zsh shell.



In this book, we expect you to be familiar with the most basic scripting

commands in Bash and PowerShell, if you are working on Windows. If you are

an absolute beginner, then we strongly recommend that you familiarize

yourself with the following cheat sheets:

Linux Command Line Cheat Sheet by Dave Child at http://bit.ly/2mTQr8l

PowerShell Basic Cheat Sheet at http://bit.ly/2EPHxze

PowerShell for Windows
On a Windows computer, laptop, or server, we have multiple command-line

tools available. The most familiar is the command shell. It has been available

on any Windows computer for decades. It is a very simple shell. For more

advanced scripting, Microsoft has developed PowerShell. PowerShell is very

powerful and very popular among engineers working on Windows. Finally, on

Windows 10 or later, we have the so-called Windows Subsystem for Linux,

which allows us to use any Linux tool, such as the Bash or Bourne shells. Apart

from this, other tools also install a Bash shell on Windows, such as the Git

Bash shell. In this book, all commands will use Bash syntax. Most of the

commands also run in PowerShell.

Therefore, we recommend that you either use PowerShell or any other Bash

tool to work with Docker on Windows.

Installing and using a package manager
The easiest way to install software on a Linux, macOS, or Windows laptop is

to use a good package manager. On macOS, most people use Homebrew,

while on Windows, the Windows package manager (winget) or Chocolatey are

good choices. If you're using a Debian-based Linux distribution such as

Ubuntu, then the package manager of choice for most is apt, which is installed

by default.

Installing Homebrew on macOS
Homebrew is the most popular package manager on macOS, and it is easy to

use and very versatile. Installing Homebrew on macOS is simple; just follow

the instructions at https://brew.sh/:

https://http//bit.ly/2mTQr8l
https://http//bit.ly/2EPHxze
https://brew.sh/


�. In a nutshell, open a new Terminal window and execute the following

command to install Homebrew:

/bin/bash -c "$(curl -fsSL 
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

�. Once the installation has �nished, test whether Homebrew is working by

entering brew --version in the Terminal. You should see something like

this:

$ brew --version 
Homebrew 4.4.23

�. Now, we are ready to use Homebrew to install tools and utilities. If we,

for example, want to install the iconic Vi text editor (note that this is not

a tool we will use in this book; it serves just as an example), we can do so

like this:

$ brew install vim

This will download and install the editor for you.

Installing Chocolatey on Windows
Chocolatey is a popular package manager for Windows, built on PowerShell.

To install the Chocolatey package manager, please follow these instructions:

�. Open PowerShell as administrator: Press Win + S, type "PowerShell", and

select "Run as administrator".

�. Set the execution policy:

a. In the PowerShell window, check the current execution policy by

typing the following:

Get-ExecutionPolicy

b. If it returns Restricted, change it to AllSigned or Bypass to allow the

installation script to run:

Set-ExecutionPolicy Bypass -Scope Process -Force

�. To install Chocolatey, run the following command in the PowerShell

window:



[System.Net.ServicePointManager]::SecurityProtocol = 
[System.Net.ServicePointManager]::SecurityProtocol -bor 3072; 
iex ((New-Object 
System.Net.WebClient).DownloadString('https://community.chocolat
ey.org/install.ps1'))

�. After the installation completes, verify that Chocolatey is installed by

typing the following:

choco

�. Check the installed version of Chocolatey by typing the following

command and pressing Enter:

choco --version

You should see an output like this:

2.4.3

This indicates that, at the time of writing, Chocolatey was at version

2.4.3.

�. Try to install an application with Chocolatey, such as Vim:

choco install -y vim

The -y parameter makes sure that the installation happens without

Chocolatey asking for a recon�rmation. As mentioned previously, we

will not use Vim in our exercises; it has only been used as an example.

Installing Git and cloning the code repository
We will be using Git to clone the sample code accompanying this book from

its GitHub repository. If you already have Git installed on your computer, you

can skip this section:

Note

Once Chocolatey has installed an application, you may need to open a

new PowerShell window to use that application.

NOTE



�. To install Git on macOS, use the following command in a Terminal

window:

$ brew install git

�. To install Git on Windows, open a PowerShell window and use

Chocolatey to install it:

PS> choco install git –y

�. Finally, on your Debian or Ubuntu machine, open a Bash console and

execute the following command:

$ sudo apt update && sudo apt install -y git

�. Once Git has been installed, verify that it is working. On all platforms,

use the following command:

$ git --version

This should output the version of Git that's been installed. On the

author's MacBook Pro M2, the output is as follows:

git version 2.49.0

�. Now that Git is working, we can clone the source code accompanying

this book from GitHub. Execute the following command:

$ cd ~ 
$ git clone  https://github.com/PacktPublishing/The-Ultimate-Docker-Container-Book-Fourth-
Edition.git

This will clone the content of the main branch into your local folder,

~/The-Ultimate-Docker-Container-Book-v4. This folder will now contain

Note

If you see an older version, then you are probably using the version

that came installed with macOS by default. Use Homebrew to install

the latest version by running $ brew install git.

NOTE



all of the sample solutions for the labs we are going to do together in this

book. Refer to these sample solutions if you get stuck.

Now that we have installed the basics, let's continue with the code editor.

Choosing and installing a code editor
Using a good code editor is essential to working productively with Docker. Of

course, which editor is the best is highly controversial and depends on your

personal preference. A lot of people use Vim, or others such as Emacs, Atom,

Sublime, or Visual Studio Code (VS Code), to name just a few. VS Code is a

completely free and lightweight editor, yet it is very powerful and is available

for macOS, Windows, and Linux. According to Stack Over�ow, it is currently

by far the most popular code editor. If you are not yet sold on another editor, I

highly recommend that you give VS Code a try.

But if you already have a favorite code editor, then please continue using it. So

long as you can edit text �les, you're good to go. If your editor supports syntax

highlighting for Docker�les and JSON and YAML �les, then even better. The

only exception will be Chapter 6, Debugging Code Running in a Container. The

examples presented in that chapter will be heavily tailored toward VS Code.

Installing VS Code on macOS
Follow these steps for installation:

�. Open a new Terminal window and execute the following command:

$ brew install –cask visual-studio-code

�. Once VS Code has been installed successfully, navigate to your home

directory:

cd ~

�. Now, open VS Code from within this folder:

$ code The-Ultimate-Docker-Container-Book-v4

VS will start and open the The-Ultimate-Docker-Container-Book-v4 folder,

where you just downloaded the repository that contains the source code

for this book, as the working folder.



Use VS Code to explore the code that you can see in the folder you just opened.

Installing VS Code on Windows
Follow these steps for installation:

�. Open a new PowerShell window in admin mode and execute the

following command:

PS> choco install vscode -y

�. Close your PowerShell window and open a new one to make sure VS

Code is in your path.

�. Now, navigate to your home directory:

PS> cd ~

�. Now, open VS Code from within this folder:

PS> code The-Ultimate-Docker-Container-Book-v4

VS will start and open the The-Ultimate-Docker-Container-Book-v4 folder,

where you just downloaded the repository that contains the source code

for this book, as the working folder.

Use VS Code to explore the code that you can see in the folder you just opened.

Installing VS Code on Linux
Follow these steps for installation. We will use snap for this:

�. First, we need to ensure that Snap is installed. Most Debian and Ubuntu

systems come with Snap pre-installed. To verify, open a terminal and

run the following:

$ snap --version

Note

If you already have VS Code installed without using brew, then the

guide at https://code.visualstudio.com/docs/setup/mac#_launching-
from-the-command-line will add code to your PATH.

NOTE

https://code.visualstudio.com/docs/setup/mac#_launching-from-the-command-line


�. If Snap isn't installed, you'll need to install it. For Debian-based systems,

use the following:

$ sudo apt update 
$ sudo apt install snapd

�. Now, to install VS Code via Snap, in your Bash Terminal, execute the

following statement:

$ sudo snap install --classic code

�. The --classic �ag ensures VS Code has the necessary permissions to

function correctly.

�. If you're using a Linux distribution that's not based on Debian or

Ubuntu, then please follow the following link for more details:

https://code.visualstudio.com/docs/setup/linux.

�. Once VS Code has been installed successfully, navigate to your home

directory:

$ cd ~

�. Now, open Visual Studio Code from within this folder:

$ code The-Ultimate-Docker-Container-Book-v4

VS will start and open the The-Ultimate-Docker-Container-Book-v4 folder,

where you just downloaded the repository that contains the source code

for this book, as the working folder.

Use VS Code to explore the code that you can see in the folder you just opened.

Installing VS Code extensions
Extensions are what make VS Code such a versatile editor. On all three

platforms (macOS, Windows, and Linux), you can install VS Code extensions

the same way:

�. Open a Bash console (or PowerShell in Windows) and execute the

following group of commands to install the most essential extensions

we are going to use in the upcoming examples in this book:

code --install-extension vscjava.vscode-java-pack 
code --install-extension ms-dotnettools.csharp 

https://code.visualstudio.com/docs/setup/linux


code --install-extension ms-python.python 
code --install-extension ms-azuretools.vscode-docker 
code --install-extension eamodio.gitlens

We are installing extensions that enable us to work with Java, C#, .NET,

and Python much more productively. We're also installing an extension

built to enhance our experience with Docker.

�. After the preceding extensions have been installed successfully, restart

VS Code to activate the extensions. You can now click the extensions icon

in the activity pane on the left-hand side of VS Code to see all the

installed extensions.

�. To get a list of all installed extensions in your VS Code, use this

command:

$ code --list-extensions

Currently, AI is eating the world. This is speci�cally true in software

development and associated �elds. In this regard, we cannot miss discussing

the installation of at least one popular AI-powered development

environment.

Installing cursor.ai
As arti�cial intelligence continues to revolutionize software development,

tools such as cursor.ai have emerged to help streamline your coding

experience. cursor.ai is an intelligent assistant integrated directly into Visual

Studio Code that provides real-time code suggestions, context-aware

completions, and insightful recommendations—all designed to boost your

productivity.

Follow these steps to install cursor.ai:

�. Download the installer: Visit https://www.cursor.com and click

Download. The website detects your operating system and provides the

appropriate installer.

�. Run the installer: Execute the downloaded �le and follow the

installation prompts (this process is similar to installing any standard

application on Windows or macOS).

https://www.cursor.com/


�. Launch and con�gure: Once installed, launch Cursor from your Start

menu (Windows) or Applications folder (macOS). On �rst launch, you'll

be prompted to con�gure settings (such as keyboard shortcuts,

language, and code base indexing) and sign in with your account.

cursor.ai transforms your coding work�ow by integrating advanced AI directly

into a familiar, VS Code-based editor. It offers intelligent code completions,

natural language editing, real-time debugging assistance, and context-aware

code base insights to help you write, refactor, and troubleshoot code more

ef�ciently. For more details, please visit https://www.cursor.com/.

Now that we have installed a proper code editor, let's focus on Docker and

install Docker Desktop.

Installing Docker Desktop on macOS,
Windows, or Linux
If you are using macOS or have Windows 10 or later installed on your laptop,

then we strongly recommend that you install Docker Desktop. Since early

2022, Docker has also released a version of Docker Desktop for Linux. Docker

Desktop gives you the best experience when working with containers. Follow

these steps to install Docker Desktop for your system:

�. If you're working on Linux, please navigate to

https://docs.docker.com/desktop/install/linux/ and follow the

instructions to install Docker Desktop. When done, skip to the "Testing

Docker Engine" section.

�. No matter whether you're using Windows or macOS, navigate to the

Docker start page at https://www.docker.com/get-started:

https://www.cursor.com/
https://docs.docker.com/desktop/install/linux/
https://www.docker.com/get-started


Figure 2.1: Get Started with Docker

�. In the upper-right corner of the view, you will �nd a Sign In button for

Docker Hub. Click this button even if you don't yet have an account on

Docker Hub, then follow the instructions to either log in or create an

account. It is free, but you need an account to download the software.

�. In the previous screenshot, Figure 2.1, you will �nd a blue button called

Download Docker Desktop. When you click it, a popup will appear, as

shown in the following screenshot, containing the list of available

downloads:



Figure 2.2: List of Docker Desktop targets

Select the one that is appropriate for you and observe the installation

package being downloaded.

�. Once the package has been completely downloaded, proceed with the

installation, usually by double-clicking on the download package.

Testing Docker Engine
Now that you have successfully installed Docker Desktop, let's test it. We will

start by running a simple Docker container directly from the command line:



�. Open a Terminal window and execute the following command:

$ docker version

You should see something like this:

Figure 2.3: Docker version of Docker Desktop

In the preceding output, we can see that it consists of two parts – a client

and a server. Here, the server corresponds to Docker Engine, which is

responsible for hosting and running containers. At the time of writing,

the version of Docker Engine is 27.4.0.

�. To see whether you can run containers, enter the following command

into the Terminal window and hit Enter:

$ docker container run hello-world



If all goes well, your output should look something like the following:

Figure 2.4: Running hello-world on Docker Desktop for macOS

If you read the preceding output carefully, you will have noticed that

Docker didn't �nd an image called hello-world:latest, and thus decided

to download it from a Docker image registry. Once downloaded, Docker

Engine created a container from the image and ran it. The application

runs inside the container and then outputs all the text, starting with

Hello from Docker!

This is proof that Docker is installed and working correctly on your

machine.

�. Let's try another funny test image that's usually used to check the

Docker installation. Run the following command:

$ docker container run rancher/cowsay hello

You should see this or a similar output:



Figure 2.5: Running the cowsay image from Rancher

Great – we have con�rmed that Docker Engine works on our local computer.

Now, let's make sure the same is true for Docker Desktop.

Testing Docker Desktop
Depending on the operating system you are working with, be it Linux, Mac, or

Windows, you can access the context menu for Docker Desktop in different

areas. In any case, the symbol you are looking for is the little whale carrying

containers. Here is the symbol as found on a Mac: :

Mac: 'You'll �nd the icon on the right-hand side of your menu bar at the

top of the screen

Windows: You'll �nd the icon in the Windows system tray

Linux: Here are the instructions for Ubuntu. On your distro, it may be different.

To start Docker Desktop for Linux, search for Docker Desktop via the

Applications menu and open it. This will launch the Docker menu icon

and open the Docker dashboard, reporting the status of Docker Desktop.

Once you have located the context menu for Docker Desktop on your

computer, proceed with the following steps:



�. Click the whale icon to display the context menu of Docker Desktop. On

the author's' Mac, it looks like this:

Figure 2.6: Context menu for Docker Desktop



�. From the menu, select Dashboard. The dashboard of Docker Desktop

will open:

Figure 2.7: Dashboard of Docker Desktop

We can see that the dashboard has multiple tabs, indicated on the left-hand

side of the view. Currently, the Containers tab is active. Consequently, we can

see the list of containers found in our system. Currently, on the author's

system, two have been found. If you inspect carefully, you will see that these

are the containers that we previously created from the hello-world and

rancher/cowsay Docker images. If you click on one of the entries, the details of

this container will be displayed, and you will notice that they both have the

status Exited.

Please take some time and explore this dashboard a bit. Don't worry if you get

lost. It will all become much clearer as we proceed through the various

chapters of this book.

�. When you're done exploring, close the dashboard window.

Note

Closing the dashboard will not stop Docker Desktop. The application,

as well as Docker Engine, will continue to run in the background. If,

for some reason, you want to stop Docker on your system completely,

you can select Quit Docker Desktop from the context menu shown in

Figure 2.6.

NOTE



Congratulations, you have successfully installed and tested Docker Desktop

on your working computer! Now, let's continue with a few other useful tools.

Using Docker with WSL 2 on Windows
If you're a Windows 10 or 11 user, you can leverage the Windows Subsystem

for Linux version 2 (WSL 2) to enjoy near-native Linux performance for

containers. By default, Docker Desktop for Windows integrates tightly with

WSL 2, eliminating the need for a separate Linux VM. To do so, please follow

these steps:

�. Enable WSL 2: Make sure you have WSL 2 enabled on your system. You

can install or upgrade WSL by following Microsoft's of�cial

documentation, typically involving enabling the Windows Virtual

Machine Platform feature and installing a preferred Linux distribution

from the Microsoft Store. You can �nd instructions here:

https://learn.microsoft.com/en-us/windows/wsl/install

�. Check Docker Desktop settings: Once WSL 2 is enabled, open Docker

Desktop and navigate to Settings. Under General, con�rm that Use the

WSL 2 based engine is switched on. This ensures Docker runs all

containers via WSL 2 rather than Hyper-V or other backends.

�. Run containers natively: With WSL 2 activated, you can run Linux

containers much more ef�ciently. Docker Desktop automatically

manages resource allocation, �lesystem mounting, and networking

integration, giving you a smoother experience—similar to running

Docker natively on a Linux machine.

�. Advantages of WSL 2:

Improved performance: Faster �le I/O and near-native Linux speeds

for Docker containers.

Better resource management: Lower overhead compared to older

VM-based setups, and simpler memory/CPU balancing.

Seamless filesystem integration: Access your local Windows �les or

your Linux distribution's �lesystem without complex sharing

con�gurations.

https://learn.microsoft.com/en-us/windows/wsl/install


�. Troubleshooting and further details: For deeper insights—such as

customizing multiple WSL distributions or handling edge cases—you

can refer to the Microsoft and Docker documentation. Since Docker

Desktop and WSL 2 are jointly maintained by those teams, any platform-

speci�c nuances are typically well documented in their respective

guides.

By incorporating WSL 2, you will gain a more integrated and performant

Docker work�ow on Windows—without the extra complexity previously

required by Docker Toolbox or dedicated Linux VMs.

Installing Docker Toolbox
Docker Toolbox has been available for developers for a few years. It precedes

newer tools such as Docker Desktop. Toolbox allows a user to work very

elegantly with containers on any macOS or Windows computer. Containers

must run on a Linux host. Neither Windows nor macOS can run containers

natively. Hence, we need to run a Linux VM on our laptop, where we can then

run our containers. Docker Toolbox installs VirtualBox on our laptop, which is

used to run the Linux VMs we need.

Enabling Kubernetes on Docker Desktop
Docker Desktop comes with integrated support for Kubernetes.

Note

Docker Toolbox has been deprecated recently, and thus, we won't be

discussing it further. For certain scenarios, it may still be of interest,

though, which is why we are mentioning it here.

NOTE

What is Kubernetes?

Kubernetes is a powerful platform for automating the deployment,

scaling, and management of containerized applications. Whether

you're a developer, DevOps engineer, or system administrator,

Kubernetes provides the tools and abstractions you need to manage

your containers and applications in a scalable and ef�cient manner.

NOTE



This support is turned off by default. But worry not – it is very easy to enable:

�. Open the dashboard of Docker Desktop.

�. In the top-left corner, select the cog wheel icon. This will open the

settings page.

�. On the left-hand side, select the Kubernetes tab and then click the

Enable Kubernetes toggle:

Figure 2.8: Enabling Kubernetes on Docker Desktop

�. Click the Apply & restart button.

Now, you will have to be patient since Docker will download all the

supporting infrastructure and then start Kubernetes.

Once Docker has restarted, you are ready to use Kubernetes. Please refer to the

Installing minikube section, later in this chapter, on how to test Kubernetes.

Note

Only a single-node cluster is supported. For support for multi-node

setups, you should use kind or minikube, as described later in this

chapter.

NOTE



Installing Podman
Podman is an open source, daemonless container engine that serves as an

alternative to Docker. It is largely compatible with Docker's CLI, yet it offers

some distinct advantages, such as running containers in rootless mode for

improved security. Please follow these instructions to install Podman on your

system:

Installing Podman on MacOS
To install Podman on a MacOS-based system, please follow these

instructions:

�. Install Podman via Homebrew: In a Terminal, execute the following:

$ brew install podman

�. Initialize the Podman machine: To set up a lightweight virtual machine

for running containers, run this:

$ podman machine init

�. Start the Podman machine: Launch your Podman-based container

environment with the following command:

$ podman machine start

�. Verify the installation: Con�rm that Podman is installed by checking its

version:

$ podman --version

Or, view the system details using the following:

$ podman info

Installing Podman on Windows
On a Windows-based system, use the following instructions:

�. Install Podman using Chocolatey: In a terminal, execute the following:

$ choco install podman -y



�. Initialize the Podman machine: To set up a lightweight virtual machine

for running containers, run this:

$ podman machine init

�. Start the Podman machine: Launch your Podman-based container

environment with the following command:

$ podman machine start

�. Verify the installation: Con�rm that Podman is installed by checking its

version:

$ podman --version

Or, view the system details using the following:

$ podman info

Installing Podman on Linux
To install Podman on a Debian- or Ubuntu-based Linux machine, please

follow these instructions:

�. Update your package index: Open a terminal and run the following:

$ sudo apt-get update

�. Install Podman: Execute the following command:

$ sudo apt-get install -y podman

�. Verify the installation: Check the installed version to con�rm Podman is

ready:

$ podman --version

These instructions set up Podman's environment and verify that your system

is ready to run containers. While Podman's rootless, daemonless design offers

improved security and resource ef�ciency, remember that its integration on

Windows may require additional con�guration compared to Docker Desktop.

For more information, please consult the Podman getting started page at

https://podman.io/get-started.

https://podman.io/get-started


After successfully installing Podman, let's compare it with Docker Desktop.

Here are some of the pros and what are potential cons:

Pros of Podman:

Daemonless architecture: Podman runs without a background daemon,

reducing the attack surface and resource overhead

Rootless operation: It allows running containers without root privileges,

enhancing security

Docker CLI compatibility: Most Docker commands work with Podman,

making it easier to switch without a steep learning curve

Lightweight: Podman typically consumes fewer system resources than

Docker Desktop

Cons of Podman:

Limited GUI tools: Unlike Docker Desktop, which provides a

comprehensive graphical interface, Podman relies mainly on the CLI

(although third-party GUIs exist)

Platform support: Docker Desktop offers polished desktop applications

for Windows and macOS, whereas Podman's support on non-Linux

platforms may require additional con�guration or workarounds

Ecosystem and integration: Docker Desktop bene�ts from a mature

ecosystem with broad third-party integrations and native support in

many development tools

Now that we are able to run containers on our system, we also want to install

some tooling for container orchestration.

Installing minikube
If you are using Docker Desktop, you may not need minikube at all since the

former already provides out-of-the-box support for Kubernetes. If you cannot

use Docker Desktop or, for some reason, you only have access to an older

version of the tool that does not yet support Kubernetes, then it is a good idea

to install minikube. minikube by default provisions a single-node Kubernetes

cluster on your workstation and is accessible through kubectl, which is the

command-line tool used to work with Kubernetes. Note that minikube is also

able to provision multi-node clusters on your system.



Installing minikube on Linux, macOS, and
Windows
To install minikube for Linux, macOS, or Windows, navigate to the following

link: https://kubernetes.io/docs/tasks/tools/install-minikube/.

Follow the instructions carefully. Speci�cally, do the following:

�. Make sure you have a hypervisor installed, as described in the section

marked inside the box in Figure 2.9:

Figure 2.9: Prerequisites for minikube

�. Under 1 Installation, select the combination that is valid for you. As an

example, you can see the author's' selection for a MacBook Pro M2 laptop

as the target machine:

https://kubernetes.io/docs/tasks/tools/install-minikube/


Figure 2.10: Selecting the correct installation for minikube

After preparing our system for the installation of minikube and selecting the

appropriate method of installation, we will now demonstrate the actual

installation on a MacBook Pro.

Installing minikube for MacBook Pro M2 using Homebrew
Follow these steps:

�. In a Terminal window, execute the steps shown previously, in Figure

2.10. In the author's' case, this is as follows:

$ brew install minikube

�. Test the installation with the following command:

$ minikube version 
minikube version: v1.35.0 
commit: dd5d320e41b5451cdf3c01891bc4e13d189586ed



�. Now, we're ready to start a cluster. Let's start with the default:

$ minikube start

This will output something like this:

  minikube v1.35.0 on Darwin 15.3.1 (arm64) 
  Automatically selected the docker driver 
  Using Docker Desktop driver with root privileges 
  Starting "minikube" primary control-plane node in "minikube" cluster 
  Pulling base image v0.0.46 ... 
  Downloading Kubernetes v1.32.0 preload ... 
    > gcr.io/k8s-minikube/kicbase...:  452.84 MiB / 452.84 MiB  100.00% 21.62 M 
    > preloaded-images-k8s-v18-v1...:  303.97 MiB / 314.92 MiB  96.52% 14.01 Mi

�. The �rst time you do this, it will take a while since minikube needs to

download all the Kubernetes binaries. When it's done, the last line of the

output on your screen should be something like this:

 Done! kubectl is now configured to use "minikube" cluster and "default" namespace by default

Great, we have successfully installed minikube on our system! Let's try to play

with minikube a bit by creating a cluster and running our �rst application in a

container on it. Don't worry if the following commands do not make a lot of

sense to you at this time. We will discuss everything in this book in the

coming chapters.

Testing minikube and kubectl
Let's start. Please follow these steps carefully:

�. Let's try to access our cluster using kubectl. First, we need to make sure

we have the correct context selected for kubectl. If you have previously

installed Docker Desktop and now minikube, you can use the following

command:

$ kubectl config get-contexts

You should see something similar to this:

Note

minikube allows you to de�ne single- and multi-node clusters.

NOTE



Figure 2.11: List of contexts for kubectl a�er installing minikube

The asterisk next to the context called minikube tells us that this is the

current context. Thus, when using kubectl, we will work with the new

cluster created by minikube.

�. Now, let's see how many nodes our cluster has with this command:

$ kubectl get nodes

You should get something similar to this. Note that the version shown

could differ in your case:

Figure 2.12: Showing the list of cluster nodes for the minikube cluster

Here, we have a single-node cluster. The node's role is that of the control

plane, which means it is a master node. A typical Kubernetes cluster

consists of a few master nodes and many worker nodes. The version of

Kubernetes we're working with here is 1.32.0.

�. Now, let's try to run something on this cluster. We will use Nginx, a

popular web server, for this. If you have previously cloned the GitHub

repository accompanying this book to the The-Ultimate-Docker-

Container-Book-v4 folder in your home directory (~), then you should �nd

a folder setup inside this folder that contains a .yaml �le that we're going

to use for this test:

�. Open a new Terminal window.

�. Navigate to the The-Ultimate-Docker-Container-Book-4 folder:

$ cd ~/The-Ultimate-Docker-Container-Book-v4

�. Create a pod running Nginx with the following command:

$ kubectl apply -f setup/nginx.yaml



You should see this output:

pod/nginx created

�. We can double-check if the pod is running with kubectl:

$ kubectl get pods

We should see this:

NAME     READY   STATUS     RESTARTS   AGE 
nginx   1/1       Running   0          29s

This indicates that we have 1 pod with Nginx running and that it

has been restarted 0 times.

�. To access the Nginx server, we need to expose the application running in

the pod with the following command:

$ kubectl expose pod nginx --type=NodePort --port=80

This is the only way can we access Nginx from our laptop – for example,

via a browser. With the preceding command, we're creating a

Kubernetes service, as indicated in the output generated for the

command:

service/nginx exposed

�. We can use kubectl to list all the services de�ned in our cluster:

$ kubectl get services

We should see something similar to this:

Figure 2.13: List of services on the minikube cluster

In the preceding output, we can see the second service, called nginx,

which we just created. The service is of the NodePort type; port 80 of the

pod had been mapped to port 30706 of the cluster node of our



Kubernetes cluster in minikube. Note that, in your case, the mapped port

may be different!

�. Now, we can use minikube to make a tunnel to our cluster and open a

browser with the correct URL to access the Nginx web server. Use this

command:

$ minikube service nginx

The output in your Terminal window will be as follows:

Figure 2.14: Opening access to the Kubernetes cluster on minikube

The preceding output shows that minikube created a tunnel for the

Nginx service listening on node port 30706 to port 52431 on the host,

which is on our laptop.

�. A new browser tab should have been opened automatically and should

have navigated you to http://127.0.0.1:52431. You should see the

welcome screen of Nginx:



Figure 2.15: Welcome screen of Nginx running on a Kubernetes cluster on minikube

Wonderful, we have successfully run and accessed an Nginx web server

on our little single-node Kubernetes cluster on minikube! Once you are

done playing around, it is time to clean up:

�. Stop the tunnel to the cluster by pressing Ctrl + C inside your Terminal

window.

�. Delete the nginx service and pod on the cluster:

$ kubectl delete service nginx 
$ kubectl delete pod nginx

�. Stop the cluster with the following command:

$ minikube stop

You should see this:

Figure 2.16: Stopping minikube

We have installed minikube and created and tested a single-node Kubernetes

cluster with it. Now, let's demonstrate how we can use minikube to create a

multi-node cluster.



Working with a multi-node minikube cluster
At times, testing with a single-node cluster is not enough. Worry not –

minikube has you covered. Follow these instructions to create a true multi-

node Kubernetes cluster in minikube:

�. If we want to work with a cluster consisting of multiple nodes in

minikube, we can use this command:

$ minikube start --nodes 3 –p demo

The preceding command creates a cluster with three nodes and calls it

demo.

�. Use kubectl to list all your cluster nodes:

$ kubectl get nodes 
NAME            STATUS   ROLES                      AGE   VERSION 
demo            Ready     control-plane   84s   v1.32.0 
demo-m02   Ready     <none>                   45s   v1.32.0 
demo-m03   Ready     <none>                   22s   v1.32.0

We have a three-node cluster where the demo node is a master node, and

the two remaining nodes are work nodes.

�. We are not going to go any further with this example here, so use the

following command to stop the cluster:

$ minikube stop -p demo

�. Delete all the clusters on your system with this command:

$ minikube delete --all

This will delete the default cluster (called minikube) and the demo

cluster in our case.

With this, we will move on to the next interesting tool that's useful when

working with containers and Kubernetes. You should have this installed and

readily available on your work computer.

Installing kind



kind is another popular tool that can be used to run a multi-node Kubernetes

cluster locally on your machine. It is super easy to install and use. Let's go:

�. Use the appropriate package manager of your platform to install kind.

You can �nd more detailed information about the installation process

here: https://kind.sigs.k8s.io/docs/user/quick-start/:

�. On MacOS, use Homebrew to install kind with the following

command:

$ brew install kind

�. On a Windows machine, use Chocolatey to do the same with this

command:

$ choco install kind -y

�. Finally, on a Linux machine, you can use the following script to

install kind from its binaries:

$ curl -Lo ./kind https://kind.sigs.k8s.io/dl/v0.17.0/kind-linux-amd64 
$ chmod +x ./kind 
$ sudo mv ./kind /usr/local/bin/kind

�. Once kind has been installed, test it with the following command:

$ kind version

If you're on a Mac, it should output something like this:

kind v0.27.0 go1.24.0 darwin/arm64

�. Now, try to create a simple Kubernetes cluster consisting of one master

node and two worker nodes. Use this command to accomplish this:

$ kind create cluster

After some time, you should see this output:

https://kind.sigs.k8s.io/docs/user/quick-start/


Figure 2.17: Creating a cluster with Kind

�. To verify that a cluster has been created, use this command:

$ kind get clusters

The preceding output shows that there is exactly one cluster called kind,

which is the default name.

�. We can create an additional cluster with a different name using the --

name parameter, like so:

$ kind create cluster --name demo

�. Listing the clusters will then show this:

$ kind get clusters 
demo 
kind

This works as expected.

To clean up, run the following command:

$ kind delete clusters –all

With this, we have installed and tested a second version of a local Kubernetes

orchestrator. Let's continue with some additional exercises involving

minikube and kind.

Testing kind and minikube
Now that we have used kind to create two sample clusters, let's use kubectl to

play with one of the clusters and run the �rst application on it. We will be

using Nginx for this, similar to what we did with minikube:



�. Let's �rst create a cluster with minikube and one with kind:

$ minikube start -p minikube-demo 
$ kind create cluster --name kind-demo

�. We can now use kubectl to access and work with the clusters we just

created. While creating a cluster, kind also updated the con�guration �le

for our kubectl. We can double-check this with the following command:

$ kubectl config get-contexts

It should produce the following output:

Figure 2.18: List of contexts defined for kubectl

You can see that the minikube-demo and kind-kind-demo clusters are part of

the list of known clusters and that the kind-kind-demo cluster is the

current context for kubectl.

�. Use the following command to make the minikube-demo cluster your

current cluster if the asterisk indicates that another cluster is current:

$ kubectl config use-context minikube-demo

�. Let's list all the nodes of the minikube-demo cluster:

$ kubectl get nodes

The output should be like this:

Figure 2.19: Showing the list of nodes on the minikube cluster

�. Now, let's try to run the �rst container on this cluster. We will use our

trusted Nginx web server, as we did earlier. Use the following command

to run it:

$ kubectl apply -f setup/nginx.yaml



The output should be as follows:

pod/nginx created

�. To access the Nginx server, we need to do port forwarding using kubectl.

Use this command to do so:

$ kubectl port-forward nginx 8080 80

The output should look like this:

Forwarding from 127.0.0.1:8080 -> 80 
Forwarding from [::1]:8080 -> 80

�. Open a new browser tab and navigate to http://localhost:8080; you

should see the welcome screen of Nginx:

Figure 2.20: Welcome screen of Nginx running on a Kind cluster

�. Once you've �nished playing with Nginx, use this command to delete

the pod from the cluster:

$ kubectl delete –f setup/nginx.yaml

�. Before we continue, let's clean up and delete the two clusters we just

created:

$ minikube delete -all 
$ kind delete cluster --name kind-demo



With this, we have installed all the tools that we will need to successfully

work with containers on our local machine.

Summary
In this chapter, we focused on establishing and con�guring a robust working

environment tailored for ef�ciently managing Docker containers—a setup

that bene�ts developers, DevOps engineers, and operations professionals

alike.

We began by emphasizing the value of a package manager, a fundamental

tool for quickly installing and maintaining the many applications and utilities

needed in a modern development work�ow. Next, we stressed the importance

of using a reliable shell for scripting (such as Bash or PowerShell) along with a

powerful code editor such as Visual Studio Code, which was enhanced with

essential extensions and even AI-powered development tools for smarter

coding.

The chapter then guided you through installing container engines—primarily

Docker for Desktop and Podman—providing the means to run and test

containers natively on your machine. Finally, we delved into local Kubernetes

orchestration by setting up and testing tools such as minikube and kind,

which allowed us to simulate both single-node and multi-node clusters. This

local setup empowered you to experiment with containerized applications in

a controlled environment, laying the groundwork for more complex

orchestration tasks in later chapters.

In the next chapter, we're going to learn important facts about containers. For

example, we will explore how we can run, stop, list, and delete containers, but

more than that, we will also dive deep into the anatomy of containers.

Further reading
Consider the following links for further reading:

Chocolatey – The Package Manager for Windows: https://chocolatey.org/

Install Docker Toolbox on Windows: https://dockr.ly/2nuZUkU

Run Docker on Hyper-V with Docker Machine: http://bit.ly/2HGMPiI

https://chocolatey.org/
https://dockr.ly/2nuZUkU
https://http//bit.ly/2HGMPiI


Developing inside a Container:

https://code.visualstudio.com/docs/remote/containers

Questions
Based on what was covered in this chapter, please answer the following

questions:

�. Why would we care about installing and using a package manager on

our local computer?

�. With Docker Desktop, you can develop and run Linux containers.

a. True

b. False

�. Why are good scripting skills (such as Bash or PowerShell) essential for

the productive use of containers?

�. Why is it critical to test your Docker installation using commands such

as docker version and docker container run hello-world?

�. How do local Kubernetes tools such as minikube and kind bene�t

containerized application development?

�. What are the pros and cons of using Docker CLI, Docker Desktop, and

Podman for container management?

Answers
The following are the answers to this chapter's questions:

�. Package managers such as apk, apt, or yum on Linux systems, Homebrew

on MacOS, and Chocolatey on Windows make it easy to automate the

installation of applications, tools, and libraries. It is a much more

repeatable process when an installation happens interactively, and the

user has to click through a series of views.

�. The answer is True. Yes, with Docker for Windows, you can develop and

run Linux containers. It is also possible, but not discussed in this book,

to develop and run native Windows containers with this edition of

Docker Desktop. With the macOS and Linux editions, you can only

develop and run Linux containers.

https://code.visualstudio.com/docs/remote/containers


�. Scripts are used to automate processes and hence avoid human errors.

Building, testing, sharing, and running Docker containers are tasks that

should always be automated to increase their reliability and

repeatability.

�. Running these tests con�rms that Docker Engine is installed correctly

and operational. The docker version command veri�es that both the

client and server components are communicating properly, while

running docker container run hello-world ensures that your system can

download images and execute containers successfully—serving as a

practical check that your entire container environment is set up as

expected.

�. Tools such as minikube and kind allow you to run a local Kubernetes

cluster on your development machine. This enables testing of container

orchestration, deployment strategies, and multi-node con�gurations

without relying on remote cloud clusters. By simulating real-world

Kubernetes environments locally, developers can experiment,

troubleshoot, and re�ne their applications before moving to production

setups.

�. Here are the pros and cons of using Docker CLI, Docker Desktop, and

Podman for container management:

Docker CLI:

Pros:

Provides a direct and lightweight way to manage containers via

commands

Highly scriptable, which is ideal for automating work�ows and

integrating into CI/CD pipelines

Cons:

Has a steeper learning curve for beginners since it requires

familiarity with command-line operations

Lacks a graphical interface, which might limit ease of use for visual

management tasks

Docker Desktop:

Pros:



Offers an integrated, user-friendly GUI that simpli�es container

management, including access to dashboards and Kubernetes

integration

Provides a complete environment (Docker Engine, CLI, and

additional tools) in one package, easing setup on macOS and

Windows

Cons:

More resource-intensive compared to using just the CLI, which

might impact performance on lower-spec machines

Limited to certain operating systems (primarily macOS, Windows,

and recently Linux) and may not suit all environments

Podman:

Pros:

Operates in a daemonless mode and supports rootless container

management, offering enhanced security and lower resource

overhead

Maintains a high degree of Docker CLI compatibility, easing the

transition for Docker users

Cons:

Lacks a mature, integrated GUI like Docker Desktop, potentially

making it less accessible for those who prefer visual tools

Ecosystem and community support might not be as extensive as

Docker's, which can affect available third-party integrations and

tooling

This comparison highlights that the choice among these tools depends

on your speci�c needs—whether you prioritize simplicity and

automation (Docker CLI), a full-featured graphical experience (Docker

Desktop), or enhanced security and lightweight operation (Podman).
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In the previous chapter, you learned how to optimally prepare your working

environment for the productive and frictionless use of Docker. In this chapter,

we are going to get our hands dirty and learn everything that is important to

know when working with containers.

Here are the topics we're going to cover in this chapter:

Running the �rst container

Starting, stopping, and removing containers

Inspecting containers

Exec into a running container

Attaching to a running container

Retrieving container logs

The anatomy of containers

After �nishing this chapter, you will be able to do the following things:

Run, stop, and delete a container based on an existing image, such as

Nginx, BusyBox, or Alpine

List all containers on the system

Inspect the metadata of a running or stopped container

Retrieve the logs produced by an application running inside a container

Run a process such as /bin/sh in an already-running container

Attach a terminal to an already-running container

Explain in your own words, to an interested layperson, the

underpinnings of a container

https://packt.link/mqfS2


Explain how Linux namespaces provide process isolation and how

cgroups manage resource allocation, forming the foundation of

containerization

Technical requirements
For this chapter, you should have Docker for Desktop installed on your Linux

workstation, macOS, or Windows PC. On macOS, use the Terminal

application, and on Windows, use the PowerShell console or Git Bash, to try

out the commands you will be learning.

Running the first container
Before we start, we want to make sure that Docker is installed correctly on

your system and ready to accept your commands. Open a new terminal

window and type in the following command (note: do not type the $ sign, as it

is a placeholder for your prompt):

$ docker version

If everything works correctly, you should see the version of the Docker client

and server installed on your laptop output in the terminal. At the time of

writing, it looks like this:



Figure 3.1 – Output of the docker version command

As you can see, I have version 27.4.0 installed on the author's MacBook Pro

M2 laptop.

If this doesn't work for you, then something with your installation is not right.

Please make sure that you have followed the instructions in the previous

chapter on how to install Docker Desktop on your system.

So, you're ready to see some action. Please type the following command into

your terminal window and hit the Return key:

$ docker container run alpine echo "Hello World"

When you run the preceding command the �rst time, you should see an

output in your terminal window like this:



Figure 3.2 – Running an Alpine container for the first time

Now that was easy! Let's try to run the very same command again:

$ docker container run alpine echo "Hello World"

The second, third, or nth time you run the preceding command, you should

see only this output in your terminal:

Hello World

Try to reason why the �rst time you run a command you see a different output

than all of the subsequent times. But don't worry if you can't �gure it out; we

will explain the reasons in detail in the following sections of this chapter.

Starting, stopping, and removing containers
You successfully ran a container in the previous section. Now, we want to

investigate in detail what exactly happened and why. Let's look again at the

command we used:

$ docker container run alpine echo "Hello World"

This command contains multiple parts. First and foremost, we have the word

docker. This is the name of the Docker Command-Line Interface (CLI) tool,

which we are using to interact with the Docker engine that is responsible for

running containers. Next, we have the word container, which indicates the

context we are working with, such as container, image, or volume. As we want

to run a container, our context is the word container. Next is the actual

command we want to execute in the given context, which is run.

Let me recap – so far, we have docker container run, which means, "hey

Docker, we want to run a container."

Now we also need to tell Docker which container to run. In this case, this is

the so-called alpine container.

NOTE



Finally, we need to de�ne what kind of process or task will be executed inside

the container when it is running. In our case, this is the last part of the

command, echo "Hello World".

The following �gure may help you to get a better idea of the whole thing:

Figure 3.3 – Docker run command explained

Now that we have understood the various parts of a command to run a

container, let's try to run another container with a different process executed

inside it. Type the following command into your terminal:

$ docker container run quay.io/centos/centos echo "Hello from centos"

You should see output in your terminal window similar to the following:

Figure 3.4 – Running the echo command inside a CentOS container

What changed is that, this time, the container image we're using is

quay.io/centos/centos and the process we're executing inside the centos

container is echo "Hello from centos".

Note

alpine is a minimal Docker image based on Alpine Linux with a

complete package index and is only about 8 MB in size. It is an of�cial

image supported by the Alpine open source project and Docker.

Note

NOTE



Let's analyze the output in detail. The �rst line is as follows:

Unable to find image 'quay.io/centos/centos:latest' locally

This tells us that Docker didn't �nd an image named

quay.iy/centos/centos:latest in the local cache of the system. So, Docker

knows that it has to pull the image from some registry where container

images are stored. By default, your Docker environment is con�gured so that

images are pulled from Docker Hub at docker.io. But this time, we explicitly

de�ne that we want to pull from the registry at quay.io. This is expressed by

the second line, as follows:

latest: Pulling from centos/centos

The next three lines of output are as follows:

4ff8fa80ba5d: Pull complete 
Digest: sha256:51ca701a9cd3b148b15b421e4bc75515108df15b333c4a61babc185e64744324 
Status: Downloaded newer image for quay.io/centos/centos:latest

This tells us that Docker has successfully pulled the centos:latest image from

quay.io. The last lines of the output are generated by the process we ran inside

the container, which is the echo tool in this case. If you have been attentive so

far, then you might have noticed the latest keyword occurring a few times.

Each image has a version (also called tag), and if we don't specify a version

explicitly, then Docker automatically assumes it is latest.

If we run the preceding container again on our system, the �rst �ve lines of

the output will be missing since, this time, Docker will �nd the container

image cached locally and hence won't have to download it �rst. Try it out and

verify what I just told you.

centos is the of�cial Docker image for CentOS Linux, a community-

supported distribution derived from sources freely provided to the

public by Red Hat for Red Hat Enterprise Linux (RHEL). It has been

deprecated, so we are now using the one from an alternative registry:

quay.io.

What exactly happens when you run a container?

NOTE



Running a random trivia question container
For the subsequent sections of this chapter, we need a container that runs

continuously in the background and produces some interesting output. That's

why we have chosen an algorithm that produces random trivia questions. The

API that produces free random trivia can be found at https://the-trivia-

api.com.

Now, the goal is to have a process running inside a container that produces a

new random trivia question every 2 seconds and outputs the question to

STDOUT. The following script will do exactly that:

while : 
do 
    curl -s https://the-trivia-api.com/v2/questions\?limit\=1 | jq '.[0].question' 
    sleep 2 
done

If you are using PowerShell, the preceding command can be translated to the

following:

while ($true) { 
  Invoke-WebRequest -Uri "https://the-trivia-api.com/v2/questions\?limit\=1" -Method GET -
UseBasicParsing | 
  Select-Object -ExpandProperty Content | 
  ConvertFrom-Json | 
  Select-Object -ExpandProperty 0 | 
  Select-Object -ExpandProperty question 

When you execute the docker container run command, Docker

performs several actions to create and start a new container from the

speci�ed image. First, Docker checks if the requested image is

available locally; if not, it pulls the image from the con�gured registry.

Once the image is available, Docker creates a new container by

allocating a �lesystem and setting up a network interface. It then

assigns an IP address to the container and sets up port mappings as

speci�ed. After con�guring the container's environment, Docker

starts the container by executing the speci�ed command. This process

ensures that the application within the container runs in an isolated

and consistent environment.

Worry not, all this and more will be explained in detail in the coming

chapters of this book.

https://the-trivia-api.com/


  Start-Sleep -Seconds 2 
}

Try it in a terminal window. Stop the script by pressing Ctrl + C. The output

should look similar to this:

Figure 3.5 – Output random trivia

Each response is a different trivia question. You may need to install jq �rst on

your Linux, macOS, or Windows computer. jq is a handy tool often used to

nicely �lter and format JSON output, which increases its readability onscreen.

Use your package manager to install jq if needed. On Windows, using

Chocolatey, the command would be as follows:

$ choco install jq

On a Mac using Homebrew, you would type the following:

$ brew install jq

Now, let's run this logic in an alpine container. Since this is not just a simple

command, we want to wrap the preceding script in a script �le and execute

that one. To make things simpler, I have created a Docker image called

Note

The ConvertFrom-Json cmdlet requires that the

Microsoft.PowerShell.Utility module be imported. If it's not already

imported, you'll need to run Import-Module
Microsoft.PowerShell.Utility before running the script.

NOTE



fundamentalsofdocker/trivia that contains all of the necessary logic so that we

can just use it here. Later on, once we have introduced Docker images, we will

analyze this container image further. For the moment, let's just use it as is.

Execute the following command to run the container as a background service.

In Linux, a background service is also called a daemon:

$ docker container run --detach \ 
    --name trivia fundamentalsofdocker/trivia:ed4

In the preceding expression, we have used two new command-line

parameters, --detach and --name. Now, --detach tells Docker to run the process

in the container as a Linux daemon.

The --name parameter, in turn, can be used to give the container an explicit

name. In the preceding sample, the name we chose is trivia. If we don't

specify an explicit container name when we run a container, then Docker will

automatically assign the container a random but unique name. This name will

be composed of the name of a famous scientist and an adjective. Such names

could be boring_borg or angry_goldberg. They're quite humorous, the Docker

engineers, aren't they?

Finally, the container we're running is derived from the

fundamentalsofdocker/trivia:ed4 image. Note how we are also using a tag, ed4,

for the container. This tag just tells us that this image was originally created

for the fourth edition of this book.

One important takeaway is that the container name has to be unique on the

system. Let's make sure that the trivia container is up and running:

$ docker container ls -l

Important note

We are using the \ character to allow line breaks in a single logical

command that does not �t on a single line. This is a feature of the

shell script we use. In PowerShell, use the backtick (`) instead.

Also note that, on zsh, you may have to press Shift + Enter instead of

only Enter after the \ character to start a new line. Otherwise, you will

get an error.

NOTE



This should give us something like this:

Figure 3.6 – Details of the last run container

An important part of the preceding output is the STATUS column, which in this

case is Up 8 seconds. That is, the container has been up and running for 8

seconds now.

Don't worry if the previous Docker command is not yet familiar to you; we

will come back to it in the next section.

To complete this section, let's stop and remove the trivia container with the

following command:

$ docker rm --force trivia

The preceding command, while forcefully removing the trivia container from

our system, will just output the name of the container, trivia, in the output.

Now it is time to learn how to list containers running or dangling on our

system.

Listing containers
As we continue to run containers over time, we get a lot of them in our system.

To prepare our system for the next command, let's run a few containers, as

follows:

$ docker container run alpine echo "hello world" 
$ docker container run --detach \ 
    quay.io/centos/centos:stream9 sleep 3600 
$ docker container run --detach --name trivia fundamentalsofdocker/trivia:ed4

Now, to �nd out what is currently running on our host, we can use the

container ls command, as follows:

$ docker container ls

This will list all currently running containers. Such a list might look similar to

this:



Figure 3.7 – List of all running containers on the system

Note, you can't see the alpine container in the preceding list. This is because

the previous command only lists running containers, and the alpine container

is in an Exited state. Later, we will learn how to also show stopped containers.

By default, Docker outputs seven columns with the following meanings:

Column Description

Container ID

This is a short version of the unique

ID of the container. It is an SHA-256,

where SHA-256 (Secure Hash

Algorithm 256-bit) is a widely used

cryptographic hash function that

takes an input and generates a

�xed-size (256-bit) output, known

as a hash. The full ID is 64

characters long.

Image

This is the name of the container

image from which this container is

instantiated.

Command

This is the command that is used to

run the main process in the

container.

Created

This is the date and time when the

container was created.

Status

This is the status of the container

(created, restarting, running,

removing, paused, exited, or dead).

Ports

This is the list of container ports

that have been mapped to the host.



Column Description

Names

This is the name assigned to this

container (note: multiple names for

the same container are possible).

Table 3.1 – Description of the columns of the docker container ls command

If we want to list not just the currently running containers but all containers

that are de�ned on our system, then we can use the -a or --all command-line

parameter, as follows:

$ docker container ls --all

This will list containers in any state, such as Created, Running, or Exited.

Sometimes, we want to just list the IDs of all containers. For this, we have the

-q or --quiet parameter:

$ docker container ls --quiet

You might wonder when this is useful. I will show you a command where it is

very helpful right here:

$ docker container rm --force $(docker container ls --all --quiet)

Lean back and take a deep breath. Then, try to �nd out what the preceding

command does. Don't read any further until you �nd the answer or give up.

Here is the solution: the preceding command forcefully deletes all containers

that are currently de�ned on the system, including the stopped ones. The rm

command stands for remove, and it will be explained soon.

There is also a –l parameter for the list command, that is, docker container ls

-l. Try to use the docker help command to �nd out what the -l parameter

stands for. You can invoke help for the list command as follows:

$ docker container ls --help

Now that you know how to list created, running, or stopped containers on

your system, let's learn how to stop and restart containers.



Stopping and starting containers
Stopping and starting Docker containers are fundamental operations that

allow us to manage the state of our applications effectively. Let's try this out

with the trivia container we used previously:

�. Run the container again with this command:

$ docker container run -d --name trivia \ 
    fundamentalsofdocker/trivia:ed4

�. Now, if we want to stop this container, then we can do so by issuing this

command:

$ docker container stop trivia

When you try to stop the trivia container, you will probably notice that it

takes a while until this command is executed. To be precise, it takes about 10

seconds. Why is this the case?

Docker sends a Linux SIGTERM signal to the main process running inside the

container. If the process doesn't react to this signal and terminate itself,

Docker waits for 10 seconds and then sends SIGKILL, which will kill the process

forcefully and terminate the container.

In the preceding command, we have used the name of the container to specify

which container we want to stop. But we could have also used the container

ID instead.

How do we get the ID of a container? There are several ways of doing so. The

manual approach is to list all running containers and �nd the one that we're

looking for in the list. From there, we copy its ID. A more automated way is to

use some shell scripting and environment variables. If, for example, we want

to get the ID of the trivia container, we can use this expression:

$ export CONTAINER_ID=$(docker container ls -a | \ 
    grep trivia | awk '{print $1}') 
$ echo $CONTAINER_ID

The equivalent command in PowerShell would look like this:

$ $CONTAINER_ID = docker container ls -a | ` 
    Select-String "trivia" | ` 



    Select-Object -ExpandProperty Line | ` 
    ForEach-Object { $_ -split ' ' } | ` 
    Select-Object -First 1 
$ Write-Output $CONTAINER_ID

Please note the back tricks (`) in PowerShell to denote a line break.

Now, instead of using the container name, we can use the $CONTAINER_ID

variable in our expression:

$ docker container stop $CONTAINER_ID

Once we have stopped the container, its status changes to Exited.

If a container is stopped, it can be started again using the docker container

start command. Let's do this with our trivia container. It is good to have it

running again, as we'll need it in the subsequent sections of this chapter:

$ docker container start $CONTAINER_ID

We can also start it by using the name of the container:

$ docker container start trivia

It is now time to discuss what to do with stopped containers that we don't

need anymore.

Removing containers
When we run the docker container ls -a command, we can see quite a few

containers that are in the Exited status. If we don't need these containers

anymore, then it is a good thing to remove them from memory; otherwise,

they unnecessarily occupy precious resources. The command to remove a

container is as follows:

Note

We are using the -a (or --all) parameter with the docker container ls
command to list all containers, even the stopped ones. This is

necessary in this case since we stopped the trivia container a

moment ago.

NOTE



$ docker container rm <container ID>

Here, <container ID> stands for the ID of the container – a SHA-256 code –

that we want to remove. Another way to remove a container is the following:

$ docker container rm <container name>

Here, we use the name of the container.

Sometimes, removing a container will not work as it is still running. If we

want to force a removal, no matter what the condition of the container

currently is, we can use the -f or --force command-line parameter:

$ docker container rm <container ID> --force

Now that we have learned how to remove containers from our system, let's

learn how to inspect containers present in the system.

Before you continue, make sure you have removed the trivia container with

the following:

$ docker container rm -f trivia

Inspecting containers
Containers are runtime instances of an image and have a lot of associated

data that characterizes their behavior. The docker container inspect

command provides detailed, low-level information about a container in JSON

format. It reveals everything from network settings and mount points to

environment variables and the exact command used to start the container.

This makes it a powerful tool for debugging and auditing, allowing you to

understand how a container was con�gured and how it's currently behaving

—without needing to access the container directly.

As usual, when executing the inspect command, we have to provide either the

container ID or the name to identify the container for which we want to

Challenge

Try to remove one of your exited containers using its ID.

NOTE



obtain the data. So, let's inspect our sample container. First, we have to run it:

$ docker container run --detach --name trivia \ 
    fundamentalsofdocker/trivia:ed4

Then, use this command to inspect it:

$ docker container inspect trivia

The response is a big JSON object full of details. It looks similar to this:

Figure 3.8 – Inspecting the trivia container

Note that the preceding screenshot only shows the �rst part of a much longer

output.

Please take a moment to analyze what you have. You should see information

such as the following:

The ID of the container

The creation date and time of the container

From which image the container is built

Many sections of the output, such as Mounts and NetworkSettings, don't make

much sense right now, but we will discuss those in the upcoming chapters of

this book. The data you're seeing here is also named the metadata of a

container. We will be using the inspect command quite often in the remainder

of this book as a source of information.



Sometimes, we need just a tiny bit of the overall information, and to achieve

this, we can use either the grep tool or a �lter. The former method does not

always result in the expected answer, so let's look into the latter approach:

$ docker container inspect -f "{{json .State}}" trivia \ 
    | jq .

The -f or --filter parameter is used to de�ne the "{{json .State}}" �lter. The

�lter expression itself uses the Go template syntax. In this example, we only

want to see the state part of the whole output in JSON format. To nicely

format the output, we pipe the result into the jq tool:

Figure 3.9 – The state node of the inspect output

After we have learned how to retrieve loads of important and useful meta

information about a container, we want to investigate how we can execute it

in a running container.

Exec into a running container
The docker container exec command lets us run a new command inside an

already running container without interrupting its main process. It's ideal for

inspecting the container's state, troubleshooting problems, or performing

administrative tasks—such as checking logs, testing connectivity, or

restarting services. Unlike docker container attach, which we will describe in

the next section, it doesn't connect us to the container's primary process but



starts a separate one, making it a safer and more �exible option for real-time

diagnostics and maintenance.

How can we do this? First, we need to know either the ID or the name of the

container, and then we can de�ne which process we want to run and how we

want it to run. Once again, we use our currently running trivia container, and

we run a shell interactively inside it with the following command:

$ docker container exec -i -t trivia /bin/sh

The output on the screen will be as follows:

/app #

The -i (or --interactive) �ag in the preceding command signi�es that we

want to run the additional process interactively, and -t (or --tty) tells Docker

that we want it to provide us with a TTY (a terminal emulator) for the

command. Finally, the process we run inside the container is /bin/sh.

If we execute the preceding command in our terminal, then we will be

presented with a new prompt, /app #. We're now in a Bourne shell inside the

trivia container. We can easily prove that by, for example, executing the ps

command, which will list all running processes in the context:

/app # ps

The result should look somewhat similar to this:

Figure 3.10 – Executing into the running trivia container

We can clearly see that the process with PID 1 is the command that we have

de�ned to run inside the trivia container. The process with PID 1 is also

named the main process.



Exit the container by pressing Ctrl + D.

We not only execute additional processes interactively in a container but also

execute them in an automated way. Please consider the following command:

$ docker container exec trivia ps

The output evidently looks very similar to the preceding output:

Figure 3.11 – List of processes running inside the trivia container

The difference is that we did not use an extra process to run a shell, but

executed the ps command directly. We can even run processes as a daemon

using the -d �ag and de�ne environment variables valid inside the container,

using the -e or --env �ag variables, as follows:

�. Run the following command to start a shell inside a trivia container and

de�ne an environment variable named MY_VAR that is valid inside this

container:

$ docker container exec -it \ 
    -e MY_VAR="Hello World" \ 
    trivia /bin/sh

�. You'll �nd yourself inside the trivia container. Output the content of the

MY_VAR environment variable, as follows:

/app # echo $MY_VAR

�. You should see the Hello World output in the terminal, as follows:



Figure 3.12 – Running a trivia container and defining an environment variable

�. To exit the trivia container, press Ctrl + D:

/app # <CTRL-d>

Before you continue to the next section, make sure to remove the trivia

container.

$ docker container rm --force trivia

Great, we have learned how to execute into a running container and run

additional processes. But there is another important way to work with a

running container.

Attaching to a running container
Attaching to a running Docker container allows us to interact directly with the

process inside it, which is especially useful for debugging, monitoring output,

or manually executing commands in an interactive shell. It gives us a live view

of the container's standard input, output, and error streams—essentially

placing us inside the container as if we were running the application locally.

This can be invaluable when diagnosing issues or exploring container

behavior in real time.

We can use the attach command to attach our terminal's standard input,

output, and error (or any combination of the three) to a running container

using the ID or name of the container. Let's do this for our trivia container:

�. Open a new terminal window.

�. Run a new instance of the trivia Docker image in interactive mode:

$ docker container run -it \ 
    --name trivia fundamentalsofdocker/trivia:ed4

Tip

You may want to use a terminal other than the integrated terminal of

VS Code for this exercise, as it seems to cause problems with the key

combinations that we are going to use. On Mac, use the Terminal app,

as an example.

NOTE



�. Open yet another terminal window and use this command to attach it to

the container:

$ docker container attach trivia

In this case, we will see, every two seconds or so, a new quote appearing

in the output.

�. To quit the container without stopping or killing it, we can use the Ctrl +

P and Ctrl + Q key combination. This detaches us from the container

while leaving it running in the background.

�. Back in the �rst terminal window, hit Ctrl + C to stop the trivia

container.

�. Stop and remove the container forcefully:

$ docker container rm --force trivia

Let's run another container – this time, an Nginx web server:

�. Run the Nginx web server as follows:

$ docker run -d --name nginx -p 8080:80 nginx:alpine

Tip

If you are using the Ctrl + P and Ctrl + Q key combination in a

terminal of VS Code, it won't work as the key combination is

intercepted by VS Code. Use a standalone terminal instead.

NOTE

Tip

Here, we run the Alpine version of Nginx as a daemon in a container

named nginx. The -p 8080:80 command-line parameter opens port

8080 on the host (that is, the user's machine) for access to the Nginx

web server running inside the container. Don't worry about the

syntax here, as we will explain this feature in more detail in Chapter

10, Single-Host Networking.

On Windows, you'll need to approve a prompt that Windows Firewall

will pop up. You have to allow Docker Desktop on the �rewall.

NOTE



�. Let's see whether we can access Nginx using the curl tool by running

this command:

$ curl -4 localhost:8080

If all works correctly, you should be greeted by the welcome page of

Nginx:

Figure 3.13 – Welcome message of the Nginx web server

�. Now, let's attach our terminal to the Nginx container to observe what's

happening:

$ docker container attach nginx

�. Once you are attached to the container, you will not see anything at �rst.

But now, open another terminal, and in this new terminal window,

repeat the curl command a few times, for example, using the following

script:

$ for n in {1..10} do; curl -4 localhost:8080 done;

Or, in PowerShell, use the following:

PS> for ($n = 1; $n -le 10; $n++) { 
    curl -4 http://localhost:8080 



}

You should see the logging output of Nginx, which looks similar to this:

Figure 3.14 – Output of Nginx

�. Quit the container by pressing Ctrl + C. This will detach your terminal

and, at the same time, stop the Nginx container.

�. To clean up, remove the Nginx container with the following command:

$ docker container rm nginx

In the next section, we're going to learn how to work with container logs.

Retrieving container logs
It is a best practice for any good application to generate some logging

information that developers and operators alike can use to �nd out what the

application is doing at a given time, and whether there are any problems to

help to pinpoint the root cause of the issue.

When running inside a container, the application should preferably output

the log items to STDOUT and STDERR and not into a �le. If the logging output is

directed to STDOUT and STDERR, then Docker can collect this information and

keep it ready for consumption by a user or any other external system:

�. Run a trivia container in detach mode:

$ docker container run --detach \ 
    --name trivia fundamentalsofdocker/trivia:ed4

Let it run for a minute or so to give it time to generate a few trivia

questions.



�. To access the logs of a given container, we can use the docker container

logs command. If, for example, we want to retrieve the logs of our trivia

container, we can use the following expression:

$ docker container logs trivia

This will retrieve the whole log produced by the application from the

very beginning of its existence.

�. If we want to only get a few of the latest entries, we can use the -t or --

tail parameter, as follows:

$ docker container logs --tail 5 trivia

This will retrieve only the last �ve lines of the log that the process

running inside the container produced.

�. Sometimes, we want to follow the log that is produced by a container.

This is possible when using the -f or --follow parameter. The following

expression will output the last �ve log items and then follow the log as it

is produced by the containerized process:

$ docker container logs --tail 5 --follow trivia

�. Press Ctrl + C to stop following the logs.

�. Clean up your environment and remove the trivia container with the

following:

$ docker container rm --force trivia

Often, using the default mechanism for container logging is not enough. We

need a different way of logging. This is discussed in the following section.

Note

Stop, wait a second – this is not quite true, what I just said. By default,

Docker uses the so-called json-file logging driver. This driver stores

logging information in a �le. If there is a �le rolling policy de�ned,

then docker container logs only retrieves what is in the currently

active log �le and not what is in previous rolled �les that might still

be available on the host.

NOTE



Logging drivers
Docker includes multiple logging mechanisms to help us to get information

from running containers. These mechanisms are named logging drivers.

Which logging driver is used can be con�gured at the Docker daemon level.

The default logging driver is json-file. Some of the drivers that are currently

supported natively are as follows:

Driver Description

none
No log output for the speci�c

container is produced.

json-file

This is the default driver. The

logging information is stored in

�les,

formatted as JSON.

journald

If the journald daemon is running

on the host machine, we can use

this driver. It forwards logging to

the journald daemon.

syslog

If the syslog daemon is running on

the host machine, we can con�gure

this driver, which will forward the

log messages to the syslog daemon.

gelf

When using this driver, log

messages are written to a Graylog

Extended Log Format (GELF)

endpoint. Popular examples of such

endpoints are Graylog and

Logstash.



Driver Description

fluentd

Assuming that the fluentd daemon

is installed on the host system, this

driver writes log messages to it.

awslogs

The awslogs logging driver for

Docker is a logging driver that

allows Docker to send log data to

Amazon CloudWatch Logs.

splunk

The Splunk logging driver for

Docker allows Docker to send log

data to Splunk, a popular platform

for log management and analysis.

Table 3.2 – List of logging drivers

Using a container-specific logging driver
The logging driver can be set globally in the Docker daemon con�guration �le.

But we can also de�ne the logging driver on a container-by-container basis. In

the following example, we are running a busybox container and use the --

logdriver parameter to con�gure the none logging driver:

�. Run an instance of the busybox Docker image and execute a simple script

in it, outputting a hello message three times:

$ docker container run --name test -it \ 
    --log-driver none \ 

Note

If you change the logging driver, please be aware that the docker
container logs command is only available for the json-file and

journald drivers. Docker 20.10 and up introduce dual logging, which

uses a local buffer that allows you to use the docker container logs
command for any logging driver.

NOTE



    busybox sh -c \ 
       'for N in 1 2 3; do echo "Hello $N"; done'

We should see the following:

Hello 1 
Hello 2 
Hello 3

�. Now, let's try to get the logs of the preceding container:

$ docker container logs test

The output is as follows:

Error response from daemon: configured logging driver does not support reading

This is to be expected since the none driver does not produce any logging

output.

�. Let's clean up and remove the test container:

$ docker container rm test

To end this section about logging, we want to discuss a somewhat advanced

topic, namely, how to change the default logging driver.

Advanced topic – changing the default
logging driver
Let's change the default logging driver of a Linux host. The easiest way to do

this is on a real Linux host. For this purpose, we're going to use Vagrant with

an Ubuntu image. Vagrant is an open source tool developed by HashiCorp that

is often used to build and maintain portable virtual software development

environments. Please follow these instructions:

�. Open a new terminal window.

�. If you haven't done so before, on your Mac or Windows machine, you

may need to install a hypervisor such as VirtualBox �rst. If you're using a

Pro version of Windows, you can also use Hyper-V instead:

To install VirtualBox on a Mac with an Intel CPU, use Homebrew as

follows:



$ brew install --cask virtualbox

On Windows, with Chocolatey, use the following:

$ choco install -y virtualbox

�. Install Vagrant on your computer using your package manager, such as

Chocolatey on Windows or Homebrew on Mac. On the author's

MacBook Pro M2, the command looks like this:

$ brew install --cask vagrant

On a Windows machine, the corresponding command would be the

following:

$ choco install -y vagrant

�. Once successfully installed, make sure Vagrant is available with the

following command:

$ vagrant --version

At the time of writing this, Vagrant replies with the following:

Vagrant 2.4.3

�. In your terminal, execute the following command to initialize an Ubuntu

22.04 VM with Vagrant:

$ vagrant init bento/ubuntu-24.04

Here is the generated output:

Note

On a Mac with an M1/M2 CPU, at the time of writing this, you

need to install the developer preview of VirtualBox. Please

follow the instructions here:

https://www.virtualbox.org/wiki/Downloads.

NOTE

https://www.virtualbox.org/wiki/Downloads


Figure 3.15 – Initializing a Vagrant VM based on Ubuntu 22.04

Vagrant will create a �le called Vagrantfile in the current folder.

Optionally, you can use your editor to analyze the content of this �le.

�. Now, start this VM using Vagrant:

$ vagrant up

�. Connect from your laptop to the VM using a secure shell (ssh):

$ vagrant ssh

After this, you will �nd yourself inside the VM and can start working

with Docker inside this VM.

Figure 3.16 – Inside the Vagrant Ubuntu 24.04 box

�. Once inside the Ubuntu VM, install Docker using the following steps:

a. Update the package list:

$ sudo apt-get update



b. Install the required dependencies:

$ sudo apt-get update 
$ sudo apt-get install -y ca-certificates \ 
    curl gnupg lsb-release

c. Add Docker's of�cial GPG key:

$ sudo mkdir -p /etc/apt/keyrings 
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o 
/etc/apt/keyrings/docker.gpg

d. Add a Docker repository:

$ echo \ 
  "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] \ 
  https://download.docker.com/linux/ubuntu \ 
  $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

e. Update the package lists again:

$ sudo apt update

f. Install Docker Engine and components:

$ sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin 
docker-compose-plugin

g. Verify the Docker installation:

$ sudo docker run hello-world

h. Add user to the Docker group:

$ sudo usermod -aG docker $USER

�. Log out and log in again to apply the changes.

��. Now, we want to edit the Docker daemon con�guration �le and trigger

the Docker daemon to reload the con�guration �le thereafter:

a. Navigate to the /etc/docker folder:

$ cd /etc/docker

b. Run vi as follows:



$ sudo vi daemon.json

c. Enter the following content:

{ 
    "Log-driver": "json-log", 
    "log-opts": { 
        "max-size": "10m", 
        "max-file": 3 
    } 
}

d. The preceding de�nition tells the Docker daemon to use the json-

log driver with a maximum log �le size of 10 MB before it is rolled,

and the maximum number of log �les that can be present on the

system is three before the oldest �le gets purged.

e. Save and exit vi by �rst pressing Esc, then typing :w:q (which means

write and quit), and �nally hitting the Enter key.

f. Now, we must send a SIGHUP signal to the Docker daemon so that it

picks up the changes in the con�guration �le:

$ sudo kill -SIGHUP $(pidof dockerd)

g. Note that the preceding command only reloads the con�g �le and

does not restart the daemon.

��. Test your con�guration by running a few containers and analyzing the

log output.

��. Clean up your system once you are done experimenting with the

following:

$ vagrant box list 
$ vagrant destroy [name|id]

Great! The previous section was an advanced topic and showed how you can

change the log driver on a system level. Let's now talk a bit about the anatomy

of containers.

The anatomy of containers
Many people wrongly compare containers to VMs. However, this is a

questionable comparison. Containers are not just lightweight VMs. OK then,



what is the correct description of a container?

Containers are specially encapsulated and secured processes running on the

host system. Containers leverage a lot of features and primitives available in

the Linux operating system. The most important ones are namespaces and

control groups (cgroups for short). All processes running in containers only

share the same Linux kernel of the underlying host operating system. This is

fundamentally different compared with VMs, as each VM contains its own

full-blown operating system.

The startup times of a typical container can be measured in milliseconds,

while a VM normally needs several seconds to minutes to start up. VMs are

meant to be long-living. It is a primary goal of each operations engineer to

maximize the uptime of their VMs. Contrary to that, containers are meant to

be ephemeral. They come and go relatively quickly.

Let's �rst get a high-level overview of the architecture that enables us to run

containers.

Architecture
Here, we have an architectural diagram of Docker and how this all �ts

together:

Figure 3.16 – High-level architecture of Docker



In the lower part of the preceding diagram, we have the Linux operating

system with its cgroups, namespaces, and layer capabilities, as well as other

operating system functionality that we do not need to explicitly mention here.

Then, there is an intermediary layer composed of containerd and runc. On top

of all that sits Docker Engine. Docker Engine offers a RESTful interface to the

outside world that can be accessed by any tool, such as the Docker CLI, Docker

Desktop, or Kubernetes, to name just a few.

Let's now describe the main building blocks in a bit more detail.

Namespaces
Linux namespaces were around for years before they were leveraged by

Docker for its containers. A namespace is an abstraction of global resources

such as �lesystems, network access, and process trees (also named PID

namespaces) or the system group IDs and user IDs. A Linux system is

initialized with a single instance of each namespace type. After initialization,

additional namespaces can be created or joined.

The Linux namespaces originated in 2002 in the 2.4.19 kernel. In kernel

version 3.8, user namespaces were introduced, and with this, namespaces

were ready to be used by containers.

If we wrap a running process, say, in a �lesystem namespace, then this

provides the illusion that the process owns its own complete �lesystem. This,

of course, is not true; it is only a virtual �lesystem. From the perspective of the

host, the contained process gets a shielded subsection of the overall

�lesystem. It is like a �lesystem in a �lesystem:



Figure 3.17 – Namespaces explained

The same applies to all of the other global resources for which namespaces

exist. The user ID namespace is another example. Now that we have a user

namespace, we can de�ne a jdoe user many times on the system as long as it is

living in its own namespace.

The PID namespace is what keeps processes in one container from seeing or

interacting with processes in another container. A process might have the

apparent PID 1 inside a container, but if we examine it from the host system, it

will have an ordinary PID, say, 334:



Figure 3.18 – Process tree on a Docker host

In each namespace, we can run one-to-many processes. That is important

when we talk about containers, which we already experienced when we

executed another process in an already-running container.

Control groups
Linux cgroups are used to limit, manage, and isolate the resource usage of

collections of processes running on a system. Resources are CPU time, system

memory, network bandwidth, or combinations of these resources.

Engineers at Google originally implemented this feature in 2006. The cgroups

functionality was merged into the Linux kernel mainline in kernel version

2.6.24, which was released in January 2008.

Using cgroups, administrators can limit the resources that containers can

consume. With this, we can avoid, for example, the classic noisy neighbor

problem, where a rogue process running in a container consumes all CPU time

or reserves massive amounts of RAM and, as such, starves all the other

processes running on the host, whether they're containerized or not.

Union filesystem



Union �lesystem (unionfs) forms the backbone of what is known as container

images. We will discuss container images in detail in the next chapter.

Currently, we want to just understand what unionfs is and how it works a bit

better. unionfs is mainly used on Linux and allows �les and directories of

distinct �lesystems to be overlaid to form a single coherent �lesystem. In this

context, the individual �lesystems are called branches. Contents of directories

that have the same path within the merged branches will be seen together in a

single merged directory, within the new virtual �lesystem. When merging

branches, the priority between the branches is speci�ed. In that way, when

two branches contain the same �le, the one with the higher priority is seen in

the �nal �lesystem.

Container plumbing
The foundation on which Docker Engine is built is formed of two components,

runc and containerd.

Originally, Docker was built in a monolithic way and contained all of the

functionality necessary to run containers. Over time, this became too rigid,

and Docker started to break out parts of the functionality into their own

components. Let's explain in more detail what runc and containerd are.

runc
runc is a lightweight, portable container runtime. It provides full support for

Linux namespaces, as well as native support for all security features available

on Linux, such as SELinux, AppArmor, seccomp, and cgroups.

runC is a tool for spawning and running containers according to the Open

Container Initiative (OCI) speci�cation. It is a formally speci�ed con�guration

format governed by the Open Container Project (OCP) under the auspices of

the Linux Foundation.

Containerd
runC is a low-level implementation of a container runtime; containerd builds

on top of it and adds higher-level features, such as image transfer and storage,

container execution, and supervision, as well as network and storage

attachments. With this, it manages the complete life cycle of containers.

Containerd is the reference implementation of the OCI speci�cations and is by

far the most popular and widely used container runtime.



Containerd was donated to and accepted by the CNCF in 2017. There are

alternative implementations of the OCI speci�cation. Some of them are rkt by

CoreOS, CRI-O by Red Hat, and LXD by Linux Containers. However,

containerd is currently by far the most popular container runtime and is the

default runtime of Kubernetes 1.8 or later and the Docker platform.

This concludes our introduction to the anatomy of containers. Let's recap the

chapter.

Summary
In this chapter, you learned how to work with containers that are based on

existing images. We showed how to run, stop, start, and remove a container.

Then, we inspected the metadata of a container, extracted its logs, and

learned how to run an arbitrary process in an already-running container. Last

but not least, we dug a bit deeper and investigated how containers work and

what features of the underlying Linux operating system they leverage.

In the next chapter, you're going to learn what container images are and how

we can build and share our own custom images. We'll also be discussing the

best practices commonly used when building custom images, such as

minimizing their size and leveraging the image cache. Stay tuned!

Further reading
The following articles give you some more information related to the topics

we discussed in this chapter:

Get started with containers at https://docs.docker.com/get-started/

Get an overview of Docker container commands at

http://dockr.ly/2iLBV2I

Learn about isolating containers with a user namespace at

http://dockr.ly/2gmyKdf

Learn about limiting a container's resources at http://dockr.ly/2wqN5Nn

Questions
To assess your learning progress, please answer the following questions:

https://docs.docker.com/get-started/
https://http//dockr.ly/2iLBV2I
https://http//dockr.ly/2gmyKdf
https://http//dockr.ly/2wqN5Nn


�. Which two core Linux features enable containerization by providing

process isolation and resource management?

�. What are the possible states of a Docker container?

�. Which command is used to display all currently running containers on

your Docker host?

�. How can you list only the container IDs of all Docker containers?

�. What is the difference between docker container exec and docker

container attach?

�. How do you run a Docker container in detached mode, and why would

you choose to do so?

Answers
Here are sample answers to the questions presented in this chapter:

�. Linux namespaces and control groups (cgroups) are the two essential

features. Namespaces create isolated environments for processes by

giving each container its own view of the system (for example, process

trees, network interfaces, �le systems), while cgroups manage and limit

the resources (CPU, memory, I/O, and so on) that processes within each

container can consume.

�. The possible states of a Docker container are as follows:

Created: The container that has been created but not yet started

Restarting: The container is in the process of being restarted

Running: The container is actively executing its main process

Paused: All processes within the container have been temporarily

suspended

Exited: The container has �nished running and its main process has

stopped

Dead: Docker attempted to stop the container, but it could not be

terminated properly

�. We can use the following (or the old, shorter version, docker ps):

$ docker container ls



This is used to list all containers that are currently running on our

Docker host. Note that this will not list the stopped containers, for which

you need the extra --all (or -a) parameter.

�. To list all IDs of containers, running or stopped, we can use the

following:

$ docker container ls -a -q

Here, -q stands for output ID only, and -a tells Docker that we want to

see all containers, including stopped ones.

�. The difference between docker container exec and docker container

attach is as follows:

docker container exec: This command starts a new process inside

an already running container. For example, you can launch an

interactive shell (using /bin/sh or /bin/bash) without affecting the

container's main process.

docker container attach: This command connects your terminal

directly to the main process of the container, attaching to its

standard input, output, and error streams. This is useful for viewing

real-time logs or interacting with the primary application running

in the container.

�. To run a container in the background, use the --detach (or -d) �ag with

the docker container run command. Here's an example:

docker container run -d --name my_container my_image

Running in detached mode is useful when you want the container to

operate as a background service—such as a web server or database—

without tying up your terminal session.
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Creating and Managing Container
Images



Join our book community on Discord:

https://packt.link/mqfS2

In the previous chapter, we learned what containers are and how to run, stop,

remove, list, and inspect them. We extracted the logging information of some

containers, ran other processes inside an already running container, and

�nally, we dove deep into the anatomy of containers. Whenever we ran a

container, we created it using a container image. In this chapter, we will

familiarize ourselves with these container images. We will learn what they

are, how to create them, and how to distribute them.

This chapter will cover the following topics:

What are Docker images?

Creating Docker images

Lift and shift: containerizing a legacy application

Sharing or shipping images

Supply chain security practices

After completing this chapter, you will be able to do the following:

Build custom Docker images using Docker�les, applying best practices

for ef�ciency and security

Create a custom image by interactively changing the container layer and

committing it

Author a simple Docker�le using keywords such as FROM, COPY, RUN, CMD,

and ENTRYPOINT to generate a custom image

Export an existing image using docker image save and import it into

another Docker host

https://packt.link/mqfS2


Write a multi-step Docker�le that minimizes the size of the resulting

image by only including the resulting binaries in the �nal image

Create a Docker�le for an existing legacy application

Utilize Docker registries to store, share, and version-control images,

demonstrating this by pushing and pulling images from a registry

What are images?
In Linux, everything is a �le. The whole operating system is a �lesystem with

�les and folders stored on the local disk. This is an important fact to

remember when looking at what container images are. As we will see, an

image is a big tarball containing a �lesystem. More speci�cally, it contains a

layered �lesystem.

The layered filesystem
Container images are templates from which containers are created. These

images are not made up of just one monolithic block but are composed of

many layers. The �rst layer in the image is also called the base layer. We can

see this in the following �gure:

tarball

A tarball (also known as a .tar archive) is a single �le that contains

multiple �les or directories. It is a common archive format that is used

to distribute software packages and other collections of �les. The .tar
archive is usually compressed using gzip or another compression

format to reduce its size. Tarballs are commonly used in Unix-like

operating systems, including Linux and macOS, and can be unpacked

using the tar command.

NOTE



Figure 4.1: The image as a stack of layers

Each layer contains �les and folders. Each layer only contains the changes to

the �lesystem concerning the underlying layers. Docker uses a Union

�lesystem – as discussed in Chapter 3, Mastering Containers – to create a virtual

�lesystem out of the set of layers. A storage driver handles the details

regarding the way these layers interact with each other. Various storage



drivers are available that each have advantages and disadvantages in different

situations.

The layers of a container image are all immutable. Immutable means that,

once generated, the layer cannot ever be changed. The only possible operation

affecting the layer is its physical deletion. This immutability of layers is

important because it opens up a tremendous number of opportunities, as we

will see later in this chapter, more precisely in the Docker�le best practices

section.

In the following �gure, we can see what a custom image for a web application,

using Nginx as a web server, could look like:

Figure 4.2: A sample custom image based on Alpine and Nginx

Our base layer here consists of the Alpine Linux distribution. Then, on top of

that, we have an Add Nginx layer where Nginx is added on top of Alpine.

Finally, the third layer contains all the �les that make up the web application,

such as HTML, CSS, and JavaScript �les.

As has been said previously, each image starts with a base image. Typically,

this base image is one of the of�cial images found on Docker Hub, such as a

Linux distro, such as Alpine, Ubuntu, or CentOS. However, it is also possible to

create an image from scratch.

Note

Docker Hub is a public registry for container images. It is a central hub

ideally suited for sharing public container images. The registry can be

found here: https://hub.docker.com/.

NOTE

https://hub.docker.com/


Each layer only contains the delta of changes regarding the previous set of

layers. The content of each layer is mapped to a special folder on the host

system, which is usually a subfolder of /var/lib/docker/.

Since layers are immutable, they can be cached without ever becoming stale.

This is a big advantage, as we will see in the Docker�le best practices section.

The writable container layer
As we have discussed, a container image is made of a stack of immutable or

read-only layers. When Docker Engine creates a container from such an

image, it adds a writable container layer on top of this stack of immutable

layers. Our stack now looks as follows:

Figure 4.3: The writable container layer

The container layer is marked as read/write (r/w). Another advantage of the

immutability of image layers is that they can be shared among many

containers created from this image. All that is needed is a thin, writable

container layer for each container, as shown in the following �gure:



Figure 4.4: Multiple containers sharing the same image layers

This technique, of course, results in a tremendous reduction in the resources

that are consumed. Furthermore, this helps decrease the loading time of a

container since only a thin container layer has to be created once the image

layers have been loaded into memory, which only happens for the �rst

container.

Copy-on-write
Docker uses the copy-on-write technique when dealing with images. Copy-

on-write is a strategy for sharing and copying �les for maximum ef�ciency. If

a layer uses a �le or folder that is available in one of the lower-lying layers,

then it just uses it. If, on the other hand, a layer wants to modify, say, a �le

from a lower-lying layer, then it �rst copies this �le up to the target layer and

then modi�es it. In the following �gure, we can see what this means:



Figure 4.5: Docker image using copy-on-write

The second layer wants to modify File 2, which is present in the base layer.

Thus, it copies it up and then modi�es it; this is indicated by the apostrophe.

Now, let's say that we're sitting in the top layer of the preceding graphic. This

layer will use File 1 from the base layer and File 2 and File 3 from the second

layer.

Graph drivers
Graph drivers, also known as storage drivers, play a crucial role in Docker's

layered architecture. They enable the Union �lesystem, which allows Docker

to ef�ciently manage and store layered container images.

Essentially, a graph driver merges multiple image layers into a single,

coherent root �lesystem. This uni�ed view becomes the root �lesystem within

a container's mount namespace, dictating how the container accesses and

interacts with stored data.

Docker uses a �exible, pluggable architecture that supports various graph

drivers. The recommended and most widely used driver today is overlay2, due

to its performance and ef�ciency advantages. Docker also supports the

original overlay driver, although it has largely been superseded by overlay2.

Now that we understand what images are, we will learn how we can create a

Docker image ourselves.

Creating Docker images
There are three ways to create a new container image on your system. The �rst

one is by interactively building a container that contains all the additions and



changes you desire, and then committing those changes into a new image.

The second, and most important, way is to use a Docker�le to describe what's

in the new image, and then build the image using that Docker�le as a

manifest. Finally, the third way of creating an image is by importing it into the

system from a tarball.

Now, let's look at these three ways in detail.

Interactive image creation
The �rst way we can create a custom image is by interactively building a

container. That is, we start with a base image that we want to use as a

template and run a container of it interactively. Let's say that this is the Alpine

image:

�. The command to run the container would be as follows:

$ docker container run -it \ 
    --name sample \ 
    alpine:3.21 /bin/sh

The preceding command runs a container based on the alpine:3.21

image.

�. We run the container interactively with an attached teletypewriter (TTY)

using the -it parameter, name it sample with the --name parameter, and

�nally run a shell inside the container using /bin/sh.

In the Terminal window where you ran the preceding command, you

should see something like this:

Figure 4.6: Alpine container in interactive mode

By default, the Alpine container does not have the curl tool installed.

Let's assume we want to create a new custom image that has curl

installed.



�. Inside the container, we can then run the following command:

/ # apk update && apk add curl

The preceding command �rst updates the Alpine package manager, apk,

and then it installs the curl tool. The output of the preceding command

should look approximately like this:

Figure 4.7: Installing curl on Alpine

�. Now, we can indeed use curl, for example, to access Google at https://

google.com, as the following code snippet shows:

Figure 4.8: Using curl from within the container

With the preceding command, we have contacted the Google home

page, and with the -I parameter, we have told curl to only output the

response headers.

�. Once we have �nished our customization, we can quit the container by

typing exit at the prompt or hitting Ctrl + D.

�. Now, if we list all containers with the docker container ls -a command,

we will see that our sample container has a status of Exited, but still



exists on the system, as shown in the following code block:

$ docker container ls -a | grep sample

�. This should output something similar to this:

Figure 4.9: The customized Docker container

�. If we want to see what has changed in our container concerning the base

image, we can use the docker container diff command, as follows:

$ docker container diff sample

�. The output should present a list of all modi�cations done on the

�lesystem of the container, as follows:



Figure 4.10: Output of the docker diff command (truncated)

We have shortened the preceding output for better readability. In the

list, A stands for added (�le or folder), and C stands for changed. If we



had any deleted �les, then those would be pre�xed with a D.

��. We can now use the docker container commit command to persist our

modi�cations and create a new image from them, like this:

$ docker container commit sample my-alpine

��. The output generated by the preceding command on the author's

computer is as follows:

sha256:78a1a06bef41e0cbe9d2228d9715a1dbb87...

��. With the preceding command, we have speci�ed that the new image will

be called my-alpine. The output generated by the preceding command

corresponds to the ID of the newly generated image.

��. We can verify this by listing all the images on our system, as follows:

$ docker image ls

��. We can see this image ID as follows:

Figure 4.11: Listing all Docker images

We can see that the image named my-alpine has the expected ID of

78a1a06bef41 (corresponding to the �rst part of the full hash code) and

automatically got a tag of latest assigned. This happened since we did

not explicitly de�ne a tag ourselves. In this case, Docker always defaults

to the latest tag.

��. If we want to see how our custom image has been built, we can use the

history command, as follows:

$ docker image history my-alpine

��. This will print a list of the layers our image consists of, as follows:



Figure 4.12: History of the my-alpine Docker image

The top layer – marked in red – in the preceding output is the one that

we just created by adding the curl package. The other two lines stem

from the original build of the Alpine 3.21 Docker image. It was created

and uploaded 2 months ago.

Now that we have seen how we can interactively create a Docker image, let's

look into how we can do the same declaratively using a Docker�le.

Using Dockerfiles
Manually creating custom images, as shown in the previous section of this

chapter, is very helpful when doing exploration, creating prototypes, or

authoring feasibility studies. But it has a serious drawback: it is a manual

process and thus is not repeatable or scalable. It is also error-prone, just like

any other task executed manually by humans. There must be a better way.

This is where the so-called Docker�le comes into play. A Docker�le is a text

�le that, by default, is called Docker�le. It contains instructions on how to

build a custom container image. It is a declarative way of building images.

Let's look at a sample Docker�le, as follows:

FROM python:3.12 
RUN mkdir -p /app 
WORKDIR /app 
COPY ./requirements.txt /app/ 
RUN pip install -r requirements.txt 
CMD ["python", "main.py"]

Declarative versus imperative

In computer science, in general, and with Docker speci�cally, you

often use a declarative way of de�ning a task. You describe the

expected outcome and let the system �gure out how to achieve this

goal, rather than giving step-by-step instructions to the system on

how to achieve this desired outcome. The latter is an imperative

approach.

NOTE



This is a Docker�le used to containerize a Python version 3.12 application. As

we can see, the �le has six lines, each starting with a keyword such as FROM,

RUN, or COPY.

Each line of the Docker�le results in a layer in the resulting image. In the

following �gure, the image is drawn upside down compared to the previous

�gures in this chapter, showing an image as a stack of layers. Here, the base

layer is shown on top. Don't let yourself be confused by this. In reality, the

base layer is always the lowest in the stack:

Figure 4.13: The relationship between a Dockerfile and the layers in an image

Now, let's look at the individual keywords in more detail.

The FROM keyword
Every Docker�le starts with the FROM keyword. With it, we de�ne which base

image we want to start building our custom image from. If we want to build

starting with Ubuntu 24.10, for example, we will have the following line in the

Docker�le:

FROM ubuntu:24.10

Note

It is a convention to write the keywords in all caps, but that is not a

must.

NOTE



On Docker Hub, there are curated or of�cial images for all major Linux distros,

as well as for all important development frameworks or languages, such as

Python, Node.js, Ruby, Go, and many more. Depending on our needs, we

should select the most appropriate base image.

For example, if I want to containerize a Python 3.12 application, I might want

to select the relevant of�cial python:3.12 image.

If we want to start from scratch, we can also use the following statement:

FROM scratch

This is useful in the context of building super-minimal images that only – for

example – contain a single binary: the actual statically linked executable, such

as Hello-World. The scratch image is an empty base image.

FROM scratch, in reality, is a no-op in the Docker�le, and as such does not

generate a layer in the resulting container image.

The RUN keyword
The next important keyword is RUN. The argument for RUN is any valid Linux

command, such as the following:

RUN yum install -y wget

The preceding command is using the yum CentOS package manager to install

the wget package in the running container. This assumes that our base image

is CentOS or Red Hat Enterprise Linux (RHEL). If we had Ubuntu as our base

image, then the command would look similar to the following:

RUN apt-get update && apt-get install -y wget

It would look like this because Ubuntu uses apt-get as a package manager.

Similarly, we could de�ne a line with RUN, like this:

RUN mkdir -p /app && cd /app

We could also do this:

RUN tar -xJC /usr/src/python --strip-components=1 \ 
    -f python.tar.xz



Here, the former creates an /app folder in the container and navigates to it,

and the latter un-tars a �le to a given location. It is completely �ne, and even

recommended, for you to format a Linux command using more than one

physical line, such as this:

RUN apt-get update \ 
  && apt-get install -y --no-install-recommends \ 
    ca-certificates \ 
    libexpat1 \ 
    libffi6 \ 
    libgdbm3 \ 
    libreadline7 \ 
    libsqlite3-0 \ 
    libssl1.1 \ 
  && rm -rf /var/lib/apt/lists/*

If we use more than one line, we need to put a backslash (\) at the end of the

lines to indicate to the shell that the command continues on the next line.

The COPY and ADD keywords
The COPY and ADD keywords are very important since, in the end, we want to

add some content to an existing base image to make it a custom image. Most

of the time, these are a few source �les of, say, a web application, or a few

binaries of a compiled application.

These two keywords are used to copy �les and folders from the host into the

image that we're building. The two keywords are very similar, with the

exception that the ADD keyword also lets us copy and unpack TAR �les, and

provides a URL as a source for the �les and folders to copy.

Let's look at a few examples of how these two keywords can be used, as

follows:

COPY . /app 
COPY ./web /app/web 
COPY sample.txt /data/my-sample.txt 
ADD sample.tar /app/bin/ 
ADD http://example.com/sample.txt /data/

Tip

Try to �nd out what the preceding command does.

NOTE



In the preceding lines of code, the following applies:

The �rst line copies all �les and folders from the current directory

recursively to the app folder inside the container image

The second line copies everything in the web subfolder to the target

folder, /app/web

The third line copies a single �le, sample.txt, into the target folder, /data,

and at the same time, renames it my-sample.txt

The fourth statement unpacks the sample.tar �le into the target folder,

/app/bin

Finally, the last statement copies the remote �le, sample.txt, into the

target �le, /data

Wildcards are allowed in the source path. For example, the following

statement copies all �les starting with sample to the mydir folder inside the

image:

COPY ./sample* /mydir/

From a security perspective, it is important to know that, by default, all �les

and folders inside the image will have a user ID (UID) and a group ID (GID) of

0. The good thing is that for both ADD and COPY, we can change the ownership

that the �les will have inside the image using the optional --chown �ag, as

follows:

ADD --chown=11:22 ./data/web* /app/data/

The preceding statement will copy all �les starting with web and put them into

the /app/data folder in the image, and at the same time assign user 11 and

group 22 to these �les.

Instead of numbers, we could also use names for the user and group, but then

these entities would have to be already de�ned in the root �lesystem of the

image at /etc/passwd and /etc/group, respectively; otherwise, the build of the

image would fail.

The WORKDIR keyword
The WORKDIR keyword de�nes the working directory or context that is used

when a container is run from our custom image. So, if I want to set the context



to the /app/bin folder inside the image, my expression in the Docker�le would

have to look as follows:

WORKDIR /app/bin

All activity that happens inside the image after the preceding line will use this

directory as the working directory. It is very important to note that the

following two snippets from a Docker�le are not the same:

RUN cd /app/bin 
RUN touch sample.txt

Compare the preceding code with the following code:

WORKDIR /app/bin 
RUN touch sample.txt

The former will create the �le in the root of the image �lesystem, while the

latter will create the �le at the expected location in the /app/bin folder. Only

the WORKDIR keyword sets the context across the layers of the image. The cd

command alone is not persisted across layers.

The CMD and ENTRYPOINT keywords
The CMD and ENTRYPOINT keywords are special. While all other keywords

de�ned for a Docker�le are executed at the time the image is built by the

Docker builder, these two are de�nitions of what will happen when a

container is started from the image we de�ne. When the container runtime

starts a container, it needs to know what the process or application will be

that has to run inside that container. That is exactly what CMD and ENTRYPOINT

are used for – to tell Docker what the start process is and how to start that

process.

Now, the differences between CMD and ENTRYPOINT are subtle, and honestly,

most users don't fully understand them or use them in the intended way.

Luckily, in most cases, this is not a problem, and the container will run

Note

It is completely �ne to change the current working directory multiple

times in a Docker�le.

NOTE



anyway; it's just that handling them is not always as straightforward as it

could be.

To better understand how to use these two keywords, let's analyze what a

typical Linux command or expression looks like. Let's take the ping utility as

an example, as follows:

$ ping -c 3 8.8.8.8

In the preceding expression, ping is the command, and -c 3 8.8.8.8 are the

parameters of this command. Let's look at another expression here:

$ wget -O - http://example.com/downloads/script.sh

Again, in the preceding expression, wget is the command, and -O -

http://example.com/downloads/script.sh are the parameters.

Now that we have dealt with this, we can get back to CMD and ENTRYPOINT.

ENTRYPOINT is used to de�ne the command of the expression, while CMD is used

to de�ne the parameters for the command. Thus, a Docker�le using Alpine as

the base image and de�ning ping as the process to run in the container could

look like this:

FROM alpine:3.21 
RUN apk update && apk add curl 
ENTRYPOINT ["ping"] 
CMD ["-c","3","8.8.8.8"]

For both ENTRYPOINT and CMD, the values are formatted as a JSON array of

strings, where the individual items correspond to the tokens of the expression

that are separated by whitespace. This is the preferred way of de�ning CMD and

ENTRYPOINT. It is also called the exec form.

Alternatively, we can use what's called the shell form, as shown here:

CMD command param1 param2

Note

You can �nd the preceding Docker�le in the sample code for Chapter

04, subfolder solutions/pinger.

NOTE



We can now build an image called pinger from the preceding Docker�le, as

follows:

$ docker image build -t pinger .

Here is the output generated by the preceding command:

Figure 4.14: Building the pinger Docker image

Then, we can run a container from the pinger image we just created, like this:

$ docker container run --rm -it pinger

Figure 4.15: Output of the pinger container

In the preceding command, we are using the --rm parameter, which de�nes

that the container is automatically removed once the applications inside the

container end.

The beauty of this is that we can now override the CMD part that we have

de�ned in the Docker�le (remember, it was ["-c", "3","8.8.8.8"]) when we

create a new container by adding the new values at the end of the docker

container run expression, like this:

$ docker container run --rm -it pinger -w 5 127.0.0.1



This will cause the container to ping the loopback IP address (127.0.0.1) for 5

seconds.

If we want to override what's de�ned in ENTRYPOINT in the Docker�le, we need

to use the --entrypoint parameter in the docker container run expression.

Let's say we want to execute a shell (ash for Alpine shell) in the container

instead of the ping command. We could do so by using the following

command:

$ docker container run --rm -it --entrypoint ash pinger

We will then �nd ourselves inside the container. Type exit or press Ctrl + D to

leave the container.

As I already mentioned, we do not necessarily have to follow best practices

and de�ne the command through ENTRYPOINT and the parameters through CMD;

instead, we can enter the whole expression as a value of CMD and it will work,

as shown in the following code block:

FROM alpine:3.21 
CMD wget -O - http://www.google.com

Here, I have even used the shell form to de�ne the CMD. But what happens in

this situation if ENTRYPOINT is unde�ned? If you leave ENTRYPOINT unde�ned,

then it will have the default value of /bin/sh -c, and whatever the value of CMD

is will be passed as a string to the shell command. The preceding de�nition

would thereby result in entering the following code to run the process inside

the container:

/bin/sh -c "wget -O - http://www.google.com"

Consequently, /bin/sh is the main process running inside the container, and it

will start a new child process to run the wget utility.

A complex Dockerfile
So far, we have discussed the most important keywords commonly used in

Docker�les. Now, let's look at a realistic and somewhat complex example of a

Docker�le. Those of you who are interested might note that it looks very

similar to the �rst Docker�le that we presented in this chapter. Here is its

content:



FROM node:23-bookworm 
RUN mkdir -p /app 
WORKDIR /app 
COPY package.json /app/ 
RUN npm install 
COPY . /app 
ENTRYPOINT ["npm"] 
CMD ["start"]

OK, so what is happening here? This is a Docker�le that is used to build an

image for a Node.js application; we can deduce this from the fact that the

node:23-bookworm base image is used. Then, the second line is an instruction to

create an /app folder in the �lesystem of the image. The third line de�nes the

working directory or context in the image to be this new /app folder. Then, on

line four, we copy a package.json �le into the /app folder inside the image.

After this, on line �ve, we execute the npm install command inside the

container; remember, our context is the /app folder, so npm will �nd the

package.json �le there that we copied on line four.

Once all the Node.js dependencies have been installed, we copy the rest of the

application �les from the current folder of the host into the /app folder of the

image.

Finally, in the last two lines, we de�ne what the startup command will be

when a container is run from this image. In our case, it is npm start, which will

start the Node.js application.

Building an image
Let's look at a concrete example and build a simple Docker image, as follows:

�. Navigate to the sample code repository. Normally, this should be located

in your home folder:

$ cd ~/The-Ultimate-Docker-Container-Book-Fourth-Edition

Note

You'll �nd the preceding Docker�le and a trivial Node.js application in

the sample code for Chapter 4, subfolder solutions/node-sample.

NOTE



�. If it doesn't already exist, create a new subfolder for Chapter 4 and

navigate to it:

$ mkdir chapter-04 && cd chapter-04

�. In the preceding folder, create a sample-1 subfolder and navigate to it,

like this:

$ mkdir sample-1 && cd sample-1

�. Use your favorite editor to create a �le called Dockerfile inside this

sample folder, with the following content:

FROM ubuntu:25.04 
RUN apt-get update && apt-get install -y wget

�. Save the �le and exit your editor.

�. Back in the Terminal window, we can now build a new container image

using the preceding Docker�le as a manifest or construction plan, like

this:

$ docker image build -t my-ubuntu .

Please note that there is a period (.) at the end of the preceding

command. The following screenshot shows the command in action:

Figure 4.16: Building our first custom image from Ubuntu 25.04

The previous command means that the Docker builder is creating a new

image called my-ubuntu using the Docker�le that is present in the current

directory. Here, the period at the end of the command speci�es the



current directory. We could also write the preceding command as

follows, with the same result:

$ docker image build -t my-ubuntu -f Dockerfile .

Here, we can omit the -f parameter since the builder assumes that the

Docker�le is called Dockerfile. We only ever need the -f parameter if our

Docker�le has a different name or is not located in the current directory.

Let's analyze the output shown in Figure 4.16. This output is created by the

Docker build kit:

�. First, we have the following line:

[+] Building 10.8s (6/6) FINISHED

This line is generated at the end of the build process, although it appears

as the �rst line. It tells us that the building took approximately 11

seconds and was executed in 6 steps.

�. Now, let's skip the next few lines until we reach this one:

=> [1/2] FROM docker.io/library/ubuntu:25.04@sha256...

This line tells us which line of the Docker�le the builder is currently

executing (1 of 2). We can see that this is the FROM ubuntu:25.04

statement in our Docker�le. This is the declaration of the base image, on

top of which we want to build our custom image. What the builder then

does is pull this image from Docker Hub if it is not already available in

the local cache.

�. Now, follow the next step. I have shortened it even more than the

preceding one to concentrate on the essential part:

=> [2/2] RUN apt-get update && apt-get install -y wget

This is our second line in the Docker�le, where we want to use the apt-

get package manager to install the wget utility.

�. The last few lines are as follows:

=> exporting to image                            0.1s 
=> => exporting layers                           0.1s 



=> => writing image sha256:df997d6c1fb...        0.0s 
=> => naming to docker.io/library/my-ubuntu.     0.0s

�. Here, the builder �nalizes building the image and provides the image

with the sha256 code of df997d6c1fb....

This tells us that the resulting custom image has been given an ID of

df997d6c1fb... and has been tagged with the name my-ubuntu:latest.

Now that we have analyzed how the build process of a Docker image works

and what steps are involved, let's talk about how to further improve this by

introducing multi-step builds.

Working with multi-step builds
To demonstrate why a Docker�le with multiple build steps is useful, let's

make an example Docker�le. Let's take a Hello World application written in C:

�. Open a new Terminal window and navigate to this chapter's folder:

$ cd The-Ultimate-Docker-Container-Book-Fourth-Edition/chapter-04

�. Create a new folder called multi-step-build in your chapter folder:

$ mkdir multi-step-build

�. Open VS Code for this folder:

$ code multi-step-build

�. Create a �le called hello.c in this folder and add the following code to it:

#include <stdio.h> 
int main (void) 
{ 
    printf ("Hello, world!\n"); 
    return 0; 
}

�. Now, we want to containerize this application and write a Docker�le in

the same folder with this content:

FROM alpine:3.12 
RUN apk update && \ 
    apk add --update alpine-sdk 
RUN mkdir /app 
WORKDIR /app 



COPY . /app 
RUN mkdir bin 
RUN gcc -Wall hello.c -o bin/hello 
ENTRYPOINT ["/app/bin/hello"]

�. Next, let's build this image:

$ docker image build -t hello-world .

This gives us a fairly long output since the builder must install the Alpine

Software Development Kit (SDK), which, among other tools, contains

the C++ compiler we need to build the application.

Figure 4.17: Building the Docker image for the C application

�. Once the build is done, we can list the image and see its size that's been

shown, as follows:

$ docker image ls | grep hello-world

In the author's case, the output is as follows:

Figure 4.18: Size of the unoptimized Docker image

With a size of 260 MB, the resulting image is way too big. In the end, it is just a

Hello World application. The reason for it being so big is that the image not

only contains the Hello World binary but also all the tools to compile and link

the application from the source code. But this is not desirable when running



the application, say, in production. Ideally, we only want to have the resulting

binary in the image and not a whole SDK.

It is precisely for this reason that we should de�ne Docker�les as multi-stage.

We have some stages that are used to build the �nal artifacts, and then a �nal

stage, where we use the minimal necessary base image and copy the artifacts

into it. This results in very small Docker images. Let's do this:

�. Create a new Docker�le in your folder called Dockerfile.multi-step with

this content:

FROM alpine:3.21 AS build 
RUN apk update && \ 
    apk add --update alpine-sdk 
RUN mkdir /app 
WORKDIR /app 
COPY . /app 
RUN mkdir bin 
# Compile statically so runtime has no dependencies 
RUN gcc -static -O2 hello.c -o bin/hello 
 
FROM scratch 
COPY --from=build /app/bin/hello /app/hello 
ENTRYPOINT ["/app/hello"]

Here, we have the �rst stage with an alias called build that is used to

compile the application; then, the second stage uses the scratch base

image and does not install the SDK, but only copies the binary from the

build stage, using the --from parameter, into this �nal image.

�. Let's build the image again, as follows:

$ docker image build -t hello-world-small \ 
    -f Dockerfile.multi-step .

�. Let's compare the sizes of the images with this command:

$ docker image ls | grep hello-world

Here, we get the following output:

Figure 4.19: Comparing sizes of Docker images



We have been able to reduce the size from 260 MB to a mere 136 KB. This is a

reduction in size by more than 3 magnitudes! A smaller image has many

advantages, such as a smaller attack surface area for hackers, reduced memory

and disk consumption, faster startup times of the corresponding containers,

and a reduction of the bandwidth needed to download the image from a

registry, such as Docker Hub.

Dockerfile best practices
In this section, we will list down a few recommended best practices to

consider when authoring a Docker�le, which are as follows:

Containers are ephemeral

First and foremost, we need to consider that containers are meant to be

ephemeral. By ephemeral, we mean that a container can be stopped and

destroyed, and a new one built and put in place with an absolute minimum of

setup and con�guration. That means that we should try hard to keep the time

that is needed to initialize the application running inside the container to a

minimum, as well as the time needed to terminate or clean up the application.

Leverage the immutability of container image layers
The next best practice tells us that we should order the individual commands

in the Docker�le so that we leverage caching as much as possible. Building a

layer of an image can take a considerable amount of time – sometimes many

seconds, or even minutes. While developing an application, we will have to

build the container image for our application multiple times. We want to keep

the build times to a minimum.

When we're rebuilding a previously built image, the only layers that are

rebuilt are the ones that have changed, but if one layer needs to be rebuilt, all

subsequent layers also need to be rebuilt. This is very important to remember.

Consider the following example:

FROM node:23-bookworm 
RUN mkdir -p /app 
WORKIR /app 
COPY . /app 
RUN npm install 
CMD ["npm", "start"]



In this example, the npm install command on line �ve of the Docker�le

usually takes the longest. A classical Node.js application has many external

dependencies, all of which are downloaded and installed during this step. It

can take minutes until it is done. To save time, we want to avoid running npm

install each time we rebuild the image; however, developers often make

changes to their source code during the development of an application. This

means that line four, the result of the COPY command, changes every time, and

thus, this layer has to be rebuilt. But as we discussed previously, that also

means that all subsequent layers have to be rebuilt, which – in this case –

includes the npm install command. To avoid this, we can slightly modify the

Docker�le and have the following:

FROM node:23-bookworm 
RUN mkdir -p /app 
WORKIR /app 
COPY package.json /app/ 
RUN npm install 
COPY . /app 
CMD ["npm", "start"]

Here, on line four, we only copied the single �le that the npm install

command needs as a source, which is the package.json �le. This �le rarely

changes in a typical development process. As a consequence, the npm install

command also has to be executed only when the package.json �le changes. All

the remaining frequently changed content is added to the image after the npm

install command.

Minimize the number of layers
A further best practice is to keep the number of layers that make up your

image relatively small. The more layers an image has, the more the graph

driver needs to work to consolidate the layers into a single root �lesystem for

the corresponding container. Of course, this takes time, and thus, the fewer

layers an image has, the faster the startup time for the container can be.

But how can we keep our number of layers low? Remember that, in a

Docker�le, each line that starts with a keyword such as FROM, COPY, or RUN

creates a new layer. The easiest way to reduce the number of layers is to

combine multiple individual RUN commands into a single one. For example,

say that we had the following in a Docker�le:



... 
RUN apt-get update 
RUN apt-get install -y ca-certificates 
RUN rm -rf /var/lib/apt/lists/* 
...

We could combine these into a single concatenated expression, as follows:

... 
RUN apt-get update \ 
    && apt-get install -y ca-certificates \ 
    && rm -rf /var/lib/apt/lists/* 
...

The former will generate three layers in the resulting image, while the latter

will only create a single layer.

Keeping container image sizes minimal
The next three best practices all result in smaller images. Why is this

important? Smaller images reduce the time and bandwidth needed to

download the image from a registry. They also reduce the amount of disk

space needed to store a copy locally on the Docker host and the memory

needed to load the image. Finally, smaller images also mean a smaller attack

surface for hackers. Here are the best practices mentioned:

The �rst best practice that helps reduce the image size is to use a

.dockerignore �le. We want to avoid copying unnecessary �les and

folders into an image, to keep it as lean as possible. A .dockerignore �le

works in the same way as a .gitignore �le, for those who are familiar

with Git. In a .dockerignore �le, we can con�gure patterns to exclude

certain �les or folders from being included in the context when building

the image.

The next best practice is to avoid installing unnecessary packages in the

�lesystem of the image. Once again, this is to keep the image as lean as

possible.

Last but not least, it is recommended that you use multi-stage builds so

that the resulting image is as small as possible and only contains the

absolute minimum needed to run your application or application

service.



In the next section, we are going to learn how to create a Docker image from a

previously saved image. In fact, it may look like restoring an image.

Saving and loading images
The third way to create a new container image is by importing or loading it

from a �le. A container image is nothing more than a tarball. To demonstrate

this, we can use the docker image save command to export an existing image

to a tarball, like this:

$ mkdir backup 
$ docker image save -o ./backup/my-alpine.tar my-alpine

The preceding command takes our my-alpine image that we previously built

and exports it into a �le called ./backup/my-alpine.tar:

Figure 4.20: Exporting an image as a tarball

If, on the other hand, we have an existing tarball and want to import it as an

image into our system, we can use the docker image load command, as

follows:

$ docker image load -i ./backup/my-alpine.tar

The output of the preceding command should be as follows:

Loaded image: my-alpine:latest

With this, we have learned how to build a Docker image in three different

ways. We can do so interactively, by de�ning a Docker�le, or by importing it

into our system from a tarball.

In the next section, we will discuss how we can create Docker images for

existing legacy applications, and thus run them in a container, and pro�t from

this.



Containerizing a legacy app using the lift and
shift approach
We can't always start from scratch and develop a brand-new application.

More often than not, we �nd ourselves with a huge portfolio of traditional

applications that are up and running in production and provide mission-

critical value to the company or the customers of the company. Often, those

applications are organically grown and very complex. Documentation is

sparse, and nobody wants to touch such an application. Often, the saying

Never touch a running system applies. Yet, market needs change, and with that

arises the need to update or rewrite those apps. Often, a complete rewrite is

not possible due to the lack of resources and time, or due to the excessive cost.

What are we going to do about those applications? Could we possibly

Dockerize them and pro�t from the bene�ts introduced by containers?

It turns out we can. In 2017, Docker introduced a program called Modernize

Traditional Apps (MTA) to their enterprise customers, which in essence

promised to help those customers take their existing or traditional Java and

.NET applications and containerize them, without the need to change a single

line of code. The focus of MTA was on Java and .NET applications since those

made up the lion's share of the traditional applications in a typical enterprise.

But the same is possible for any application that was written in, say, C, C++,

Python, Node.js, Ruby, PHP, or Go, to name just a few other languages and

platforms.

Let's imagine such a legacy application for a moment. Let's assume we have

an old Java application that was written 10 years ago, and that was

continuously updated during the following 5 years. The application is based

on Java SE 6, which came out in December 2006. It uses environment

variables and property �les for con�guration. Secrets such as usernames and

passwords used in the database connection strings are pulled from a secrets

keystore, such as HashiCorp's Vault.

Now, let's describe each of the required steps to lift and shift a legacy

application in more detail.

Analyzing external dependencies



One of the �rst steps in the modernization process is to discover and list all

external dependencies of the legacy application:

Does it use a database? If so, which one? What does the connection

string look like?

Does it use external APIs such as credit card approval or geo-mapping

APIs? What are the API keys and key secrets?

Is it consuming from or publishing to an Enterprise Service Bus (ESB)?

These are just a few possible dependencies that come to mind. Many more

exist. These are the seams of the application to the outer world, and we need

to be aware of them and create an inventory.

Preparing source code and build instructions
The next step is to locate all the source code and other assets, such as images,

CSS, and HTML �les, that are part of the application. Ideally, they should be

located in a single folder. This folder will be the root of our project and can

have as many subfolders as needed. This project root folder will be the context

during the build of the container image we want to create for our legacy

application. Remember, the Docker builder only includes �les in the build that

are part of that context; in our case, that is the root project folder.

There is, though, an option to download or copy �les during the build from

different locations, using the COPY or ADD commands. Please refer to the online

documentation for the exact details on how to use these two commands. This

option is useful if the sources for your legacy application cannot be easily

contained in a single, local folder.

Once we are aware of all the parts that are contributing to the �nal

application, we need to investigate how the application is built and packaged.

In our case, this is most probably done by using Maven. Maven is the most

popular build automation tool for Java, and has been – and still is – used in

most enterprises that develop Java applications. In the case of a legacy .NET

application, it is most probably done by using the MSBuild tool, and in the

case of a C/C++ application, make would most likely be used.

Once again, let's extend our inventory and write down the exact build

commands used. We will need this information later on, when authoring the

Docker�le.



Configuration
Applications need to be con�gured. Information provided during

con�guration could be – for example – the type of application logging to use,

connection strings to databases, and hostnames to services such as ESBs or

URIs to external APIs, to name just a few.

We can differentiate a few types of con�gurations, as follows:

Build time: This is the information needed during the build of the

application and/or its Docker image. It needs to be available when we

create the Docker images.

Environment: This is con�guration information that varies with the

environment in which the application is running – for example,

development, staging, or production. This kind of con�guration is applied

to the application when a container with the app starts – for example, in

production.

Runtime: This is information that the application retrieves during

runtime, such as secrets to access an external API.

Secrets
Every mission-critical enterprise application needs to deal with secrets in

some form or another. The most familiar secrets are part of the connection

information needed to access databases that are used to persist the data

produced by or used by the application. Other secrets include the credentials

needed to access external APIs, such as a credit score lookup API. It is

important to note that, here, we are talking about secrets that have to be

provided by the application itself to the service providers it uses or depends

on, and not to secrets provided by the users of the application. The actor here

is our own application, which needs to be authenticated and authorized by

external authorities and service providers.

There are various ways traditional applications get their secrets. The worst

and most insecure way of providing secrets is by hardcoding them or reading

them from con�guration �les or environment variables, where they are

available in cleartext. A much better way is to read the secrets during runtime

from a special secret store that persists the secrets encrypted and provides



them to the application over a secure connection, such as Transport Layer

Security (TLS).

Once again, we need to create an inventory of all secrets that our application

uses and the way it procures them. Thus, we need to ask ourselves where we

can get our secrets from: is it through environment variables or con�guration

�les, or is it by accessing an external keystore, such as HashiCorp's Vault, AWS

Secrets Manager, or Azure's Secrets Manager?

Authoring the Dockerfile
Once we have a complete inventory of all the items we discussed in the

previous few sections, we are ready to author our Docker�le. But I want to

warn you: don't expect this to be a one-shot-and-go task. You may need

several iterations until you have crafted your �nal Docker�le. The Docker�le

may be rather long and ugly looking, but that's not a problem, as long as we

get a working Docker image. We can always �ne-tune the Docker�le once we

have a working version.

The base image
Let's start by identifying the base image we want to use and build our image

from. Is there an of�cial Java image available that is compatible with our

requirements? Remember that our application is based on Java SE 6. If such a

base image is available, then we should use that one. Otherwise, we will want

to start with a Linux distro such as Red Hat, Oracle, or Ubuntu. In the latter

case, we will use the appropriate package manager of the distro (yum, apt, or

another) to install the desired versions of Java and Maven. For this, we can use

the RUN keyword in the Docker�le. Remember, RUN allows us to execute any

valid Linux command in the image during the build process.

Assembling the sources
In this step, we make sure all the source �les and other artifacts needed to

successfully build the application are part of the image. Here, we mainly use

the two keywords of the Docker�le: COPY and ADD. Initially, the structure of the

source inside the image should look the same as on the host, to avoid any

build problems. Ideally, you would have a single COPY command that copies all

of the root project folders from the host into the image. The corresponding

Docker�le snippet could then look as simple as this:



WORKDIR /app 
COPY . .

As mentioned earlier, you can also use the ADD keyword to download sources

and other artifacts into the Docker image that are not located in the build

context but somewhere reachable by a URI, as shown here:

ADD http://example.com/foobar ./

This would create a foobar folder in the image's working folder and copy all

the contents from the URI.

Building the application
In this step, we make sure to create the �nal artifacts that make up our

executable legacy application. Often, this is a JAR or WAR �le, with or without

some satellite JARs. This part of the Docker�le should mimic the way you

traditionally used to build an application before containerizing it. Thus, if

you're using Maven as your build automation tool, the corresponding snippet

of the Docker�le could look as simple as this:

RUN mvn --clean install

In this step, we may also want to list the environment variables the

application uses and provide sensible defaults. But never provide default

values for environment variables that provide secrets to the application, such

as the database connection string! Use the ENV keyword to de�ne your

variables, like this:

ENV foo=bar 
ENV baz=123

Also, declare all ports that the application is listening on and that need to be

accessible from outside of the container via the EXPOSE keyword, like this:

Note

Don't forget to also provide a .dockerignore �le, which is located in

the project root folder, which lists all the �les and (sub) folders of the

project root folder that should not be part of the build context.

NOTE



EXPOSE 5000 
EXPOSE 15672/tcp

Next, we will explain the start command.

Defining the start command
Usually, a Java application is started with a command such as java -jar

<mainapplication jar> if it is a standalone application. If it is a WAR �le, then

the start command may look a bit different. Therefore, we can either de�ne

ENTRYPOINT or CMD to use this command. Thus, the �nal statement in our

Docker�le could look like this:

ENTRYPOINT java -jar pet-shop.war

Often, though, this is too simplistic, and we need to execute a few pre-run

tasks. In this case, we can craft a script �le that contains the series of

commands that need to be executed to prepare the environment and run the

application. Such a �le is often called docker-entrypoint.sh, but you are free to

name it however you want. Make sure the �le is executable – for example, run

the following command on the host:

chmod +x ./docker-entrypoint.sh

The last line of the Docker�le would then look like this:

ENTRYPOINT ./docker-entrypoint.sh

Now that you have been given hints on how to containerize a legacy

application, it is time to recap and ask ourselves, is it worth the effort?

Why bother?
At this point, I can see you scratching your head and asking yourself: Why

bother? Why should you take on this seemingly huge effort just to

containerize a legacy application? What are the bene�ts?

It turns out that the return on investment (ROI) is huge. Enterprise customers

of Docker have publicly disclosed at conferences such as DockerCon 2018 and

2019 that they are seeing these two main bene�ts of Dockerizing traditional

applications:

More than a 50% saving in maintenance costs



Up to a 90% reduction in the time between the deployments of new

releases

The costs saved by reducing the maintenance overhead can be directly

reinvested and used to develop new features and products. The time saved

during new releases of traditional applications makes a business more agile

and able to react to changing customer or market needs more quickly.

Now that we have discussed how to build Docker images at length, it is time

to learn how we can ship those images through the various stages of the

software delivery pipeline.

Sharing or shipping images
To be able to ship our custom image to other environments, we need to give it

a globally unique name. This action is often called tagging an image. We then

need to publish the image to a central location from which other interested or

entitled parties can pull it. These central locations are called image registries.

In the following sections, we will describe how this works in more detail.

Tagging an image
Each image has a so-called tag. A tag is often used to version images, but it

has a broader reach than just being a version number. If we do not explicitly

specify a tag when working with images, then Docker automatically assumes

we're referring to the latest tag. This is relevant when pulling an image from

Docker Hub, as shown in the following example:

$ docker image pull alpine

The preceding command will pull the alpine:latest image from Docker Hub.

If we want to explicitly specify a tag, we can do so like this:

$ docker image pull alpine:3.21

This will pull the Alpine image that has been tagged with 3.21.

Demystifying image namespaces
So far, we have been pulling various images and haven't been worrying so

much about where those images originated from. Your Docker environment is

con�gured so that, by default, all images are pulled from Docker Hub. We also



only pulled so-called of�cial images from Docker Hub, such as alpine or

busybox.

Now, it is time to widen our horizons a bit and learn about how images are

namespaced. The most generic way to de�ne an image is by its fully quali�ed

name, which looks as follows:

<registry URL>/<User or Org>/<name>:<tag>

Let's look at this in a bit more detail:

Namespace part Description

<registry URL>

This is the URL to the registry from

which we want to pull the image. By

default, this is docker.io. More

generally, this could be

https://registry.acme.com.

Other than Docker Hub, there are

quite a few public registries out

there that you could pull images

from. The following is a list of some

of them, in no particular order:

Google, at

https://cloud.google.com/container
-registry

Amazon AWS Amazon Elastic

Container Registry (ECR), at

https://aws.amazon.com/ecr/

Microsoft Azure, at

https://azure.microsoft.com/en-
us/services/container-registry/

Red Hat, at

https://access.redhat.com/containe
rs/

Artifactory, at

https://registry.acme.com/
https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/services/container-registry/
https://access.redhat.com/containers/


Namespace part Description

<User or Org>

This is the private Docker ID of

either an individual or an

organization de�ned on Docker Hub

– or any other registry, for that

matter, such as Microsoft or Oracle.

<name>
This is the name of the image,

which is often also called a

repository.

<tag> This is the tag of the image.

Table 4.1: Docker image namespace elements

Let's look at an example, as follows:

https://registry.acme.com/engineering/web-app:1.0

Here, we have an image, web-app, that is tagged with version 1.0 and belongs

to the engineering organization on the private registry at

https://registry.acme.com.

Now, there are some special conventions:

If we omit the registry URL, then Docker Hub is automatically taken

If we omit the tag, then the latest tag is taken

If it is an of�cial image on Docker Hub, then no user or organization

namespace is needed

Here are a few samples in tabular form:

Image Description

alpine
The of�cial alpine image on Docker

Hub with the latest tag.

ubuntu:22.04
The of�cial ubuntu image on Docker

Hub with the 22.04 tag or version.



Image Description

hashicorp/vault
The vault image of an organization

called hashicorp on Docker Hub

with the latest tag.

acme/web-api:12.0
The web-api image version of 12.0
that's associated with the acme org.

The image is on Docker Hub.

gcr.io/jdoe/sample-app:1.1

The sample-app image with the 1.1
tag, belonging to an individual with

the jdoe ID on Google's container

registry.

Table 4.2: Examples of valid Docker image names

Now that we know how the fully quali�ed name of a Docker image is de�ned

and what its parts are, let's talk about some special images we can �nd on

Docker Hub.

Explaining official images
In the preceding table, we mentioned "of�cial image" a few times. This needs

an explanation.

Images are stored in repositories on the Docker Hub registry. Of�cial

repositories are a set of repositories hosted on Docker Hub that are curated by

individuals or organizations that are also responsible for the software

packaged inside the image. Let's look at an example of what that means.

There is an of�cial organization behind the Ubuntu Linux distro. This team

also provides of�cial versions of Docker images that contain their Ubuntu

distros.

Of�cial images are meant to provide essential base OS repositories, images for

popular programming language runtimes, frequently used data storage, and

other important services.

Docker sponsors a team whose task is to review and publish all those curated

images in public repositories on Docker Hub. Furthermore, Docker scans all

of�cial images for vulnerabilities.



Pushing images to a registry
Creating custom images is all well and good, but at some point, we want to

share or ship our images to a target environment, such as a test, quality

assurance (QA), or production system. For this, we typically use a container

registry. One of the most popular public registries out there is Docker Hub. It

is con�gured as a default registry in your Docker environment, and it is the

registry from which we have pulled all our images so far.

On a registry, we can usually create personal or organizational accounts. For

example, the author's account at Docker Hub is gnschenker. Personal accounts

are good for personal use. If we want to use the registry professionally, then

we'll probably want to create an organizational account, such as acme, on

Docker Hub. The advantage of the latter is that organizations can have

multiple teams. Teams can have differing permissions.

To be able to push an image to my account on Docker Hub, I need to tag it

accordingly. Let's say I want to push the latest version of the Alpine image to

my account and give it a tag of 1.0. I can do this in the following way:

�. Tag the existing image, alpine:latest, with this command:

$ docker image tag alpine:latest gnschenker/alpine:1.0

Here, Docker does not create a new image but creates a new reference to

the existing image, alpine:latest, and names it gnschenker/alpine:1.0.

�. Now, to be able to push the image, I have to log in to my account, as

follows:

$ docker login -u gnschenker -p <my secret password>

�. Make sure to replace gnschenker with your own Docker Hub username

and <my secret password> with your password.

�. After a successful login, I can then push the image, like this:

$ docker image push gnschenker/alpine:1.0

�. I will see something similar to this in the Terminal window:

The push refers to repository [docker.io/gnschenker/alpine] 
04a094fe844e: Mounted from library/alpine 
1.0: digest: sha256:5cb04fce... size: 528



For each image that we push to Docker Hub, we automatically create a

repository. A repository can be private or public. Everyone can pull an image

from a public repository. From a private repository, an image can only be

pulled if you are logged in to the registry and have the necessary permissions

con�gured.

Supply chain security practices
Supply chain security is a critical aspect of managing Docker images,

especially in environments where security compliance and resilience against

vulnerabilities are mandatory. Implementing robust supply chain security

practices ensures that container images remain trustworthy and free from

vulnerabilities throughout their lifecycle.

Key practices to enhance supply chain security include the following:

Using of�cial and veri�ed images: Always prefer of�cial Docker images

or those veri�ed by trusted vendors. These images are regularly updated

and scanned for vulnerabilities.

Image scanning: Regularly scan container images using vulnerability

scanning tools such as Trivy, Clair, or Docker Scout. These tools help

detect known vulnerabilities and suggest remediation strategies.

Image signing and veri�cation: Use digital signatures (such as Docker

Content Trust, implemented via Notary) to ensure the integrity and

authenticity of your images. Signed images help verify that the image

has not been tampered with and originates from a trusted source.

Least privilege principle: Run containers using minimal permissions

necessary. Avoid running containers as the root user to reduce potential

attack surfaces.

Regular updates and patches: Continuously monitor and update images

to integrate the latest security patches and �xes provided by the image

maintainers.

By incorporating these practices into our containerization work�ow, we can

signi�cantly reduce the risk of security breaches and ensure our containerized

applications run securely in production. We will dive into more details in

Chapter 8, Docker Tips and Tricks.



Summary
In this chapter, we explored the fundamental concepts and practices of

creating and managing Docker container images. We started by examining

the layered architecture of Docker images and the crucial role of graph drivers

(also known as storage drivers). We saw how these graph drivers, particularly

the widely recommended overlay2, ef�ciently merge multiple immutable

layers into a uni�ed root �lesystem used by containers.

Next, we walked through practical approaches to building container images,

including interactive image creation, Docker�le-driven builds, and methods

for saving and loading images. Additionally, we introduced a pragmatic "lift

and shift" approach to help modernize legacy applications, outlining a

structured process involving dependency analysis, con�guration

management, and secure handling of secrets.

Finally, we highlighted the importance of supply chain security practices,

emphasizing key strategies for securing Docker images. We discussed best

practices such as using of�cial and veri�ed images, regularly scanning for

vulnerabilities, employing image signing to ensure authenticity, applying the

principle of least privilege to containers, and consistently integrating security

updates and patches.

By following these guidelines, we reinforced how containerized applications

can be securely and ef�ciently prepared for robust production deployments.

In the next chapter, we will delve into managing data in Docker containers,

focusing on data volumes, environment variables, and the use of

con�guration �les. We will learn practical approaches to persist data and

con�gure applications securely and effectively.

Questions
Please try to answer the following questions to assess your learning progress:

�. What is the primary function of Docker graph drivers?

�. What is a Docker�le used for?

�. How can you create a Docker image interactively?

�. What are two important bene�ts of using multi-stage builds in

Docker�les?



�. What are three best practices for securing the Docker image supply

chain?

�. How would you create a Docker�le that inherits from Ubuntu version

25.04, and that installs ping and runs ping when a container starts? The

default address used to ping should be 127.0.0.1.

�. How would you create a new container image that uses alpine:latest as

a base image and installs curl on top of it? Name the new image my-

alpine:1.0.

�. Create a Docker�le that uses multiple steps to create an image of a Hello

World app of minimal size, written in C or Go.

�. Name three essential characteristics of a Docker container image.

��. What command can you use to export a Docker image as a tarball?

��. You want to push an image named foo:1.0 to your jdoe personal account

on Docker Hub. Which of the following is the right solution?

a. $ docker container push foo:1.0

b. $ docker image tag foo:1.0 jdoe/foo:1.0

c. $ docker image push jdoe/foo:1.0

d. $ docker login -u jdoe -p <your password>

e. $ docker image tag foo:1.0 jdoe/foo:1.0

f. $ docker image push jdoe/foo:1.0

g. $ docker login -u jdoe -p <your password>

h. $ docker container tag foo:1.0 jdoe/foo:1.0

i. $ docker container push jdoe/foo:1.0

j. $ docker login -u jdoe -p <your password>

k. $ docker image push foo:1.0 jdoe/foo:1.0

Answers
Here are possible answers to this chapter's questions:

�. Graph drivers merge multiple image layers into a single, coherent root

�lesystem used by containers.

�. A Docker�le is used as a declarative method to de�ne and build Docker

container images consistently and repeatably.



�. You can create a Docker image interactively by running a container from

an existing base image, making manual changes, and then committing

those changes into a new image using the docker commit command.

�. Multi-stage builds help create signi�cantly smaller container images by

including only essential runtime components and improve security by

minimizing the attack surface.

�. Three best practices to secure the Docker image supply chain are:

a. Regularly scanning images for vulnerabilities.

b. Using of�cial or veri�ed images from trusted sources.

c. Implementing image signing and veri�cation to ensure

authenticity.

�. The Docker�le could look like this:

FROM ubuntu:25.04 
RUN apt-get update && \ 
    apt-get install -y iputils-ping 
ENTRYPOINT ["ping"] 
CMD ["127.0.0.1"]

Note that in Ubuntu, the ping tool is part of the iputils-ping package.

You can build the image called pinger – for example – with the following

command:

$ docker image build -t mypinger .

�. The Docker�le could look like this:

FROM alpine:latest 
RUN apk update && \ 
    apk add curl

Build the image with the following command:

$ docker image build -t my-alpine:1.0 .

�. The Docker�le for a Go application could look like this:

FROM golang:1.23 AS builder 
WORKDIR /app 
# Disable modules so no go.mod is needed 
ENV GO111MODULE=off 
COPY main.go . 



RUN CGO_ENABLED=0 GOOS=linux \ 
    go build -ldflags="-s -w" -o hello 
FROM scratch 
COPY --from=builder /app/hello /hello 
ENTRYPOINT ["/hello"]

You can �nd the full solution in the ~/The-Ultimate-Docker-Container-

Book-Fourth-Edition/chapter-04/solutions/answer-08 folder.

�. A Docker image has the following characteristics:

It is immutable

It consists of one-to-many layers

It contains the �les and folders needed for the packaged application

to run

��. Use the docker image save command to export an image as a tarball, for

example: docker image save -o image.tar <image-name>.

��. The correct answer is C. First, you need to log in to Docker Hub; then,

you must tag your image correctly with the username. Finally, you must

push the image.
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Data Volumes and Configuration
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In the previous chapter, we learned how to build and share our container

images. Focus was placed on how to build images that are as small as possible

by only containing artifacts that are needed by the containerized application.

In this chapter, we are going to learn how we can work with stateful

containers – that is, containers that consume and produce data. We will also

learn how to con�gure our containers at runtime and at image build time,

using environment variables and con�g �les.

Here is a list of the topics we're going to discuss:

Creating and mounting data volumes

Sharing data between containers

Using host volumes

De�ning volumes in images

Con�guring containers

Persistent storage and stateful container patterns

After working through this chapter, you will be able to do the following:

Create, delete, and list data volumes

Mount an existing data volume into a container

Create durable data from within a container using a data volume

Share data between multiple containers using data volumes

Mount any host folder into a container using data volumes

De�ne the access mode (read/write or read-only) for a container when

accessing data in a data volume

Con�gure environment variables for applications running in a container

https://packt.link/mqfS2


Parameterize a Docker�le by using build arguments

Technical requirements
For this chapter, you need to have Docker Desktop installed on your machine.

There is no code accompanying this chapter.

Before we start, we need to create a folder for Chapter 5 inside our code

repository:

�. Use this command to navigate to the folder where you checked out the

code from GitHub:

$ cd ~/The-Ultimate-Docker-Container-Book-v4

�. Create a sub-folder for Chapter 5 and navigate to it:

$ mkdir chapter-05 && cd chapter-05

Let's get started!

Creating and mounting data volumes
All meaningful applications consume or produce data. Yet containers are,

preferably, meant to be stateless. How are we going to deal with this? One way

is to use Docker volumes. Volumes allow containers to consume, produce, and

modify a state. Volumes have a life cycle that goes beyond the life cycle of

containers. When a container that uses a volume dies, the volume continues

to exist. This is great for the durability of the state.

Modifying the container layer
Before we dive into volumes, let's �rst discuss what happens if an application

in a container changes something in the �lesystem of the container. In this

case, the changes are all happening in the writable container layer that we

Note

If you did not check out the GitHub repository at the default location,

the preceding command may vary for you.

NOTE



introduced in Chapter 4, Creating and Managing Container Images. Let's quickly

demonstrate this:

�. Run a container and execute a script in it that creates a new �le, like this:

$ docker container run --name demo alpine \ 
  /bin/sh -c 'echo "This is a test" > sample.txt'

�. The preceding command creates a container named demo, and, inside this

container, creates a �le called sample.txt with the content This is a

test. The container exits after running the echo command but remains in

memory, available for us to do our investigations.

�. Let's use the diff command to �nd out what has changed in the

container's �lesystem concerning the �lesystem of the original image, as

follows:

$ docker container diff demo

The output should look like this:

A /sample.txt

�. A new �le, as indicated by the letter A, has been added to the �lesystem

of the container, as expected. Since all layers that stem from the

underlying image (Alpine, in this case) are immutable, the change could

only happen in the writeable container layer.

Files that have changed compared to the original image will be marked with a

C, and those that have been deleted with a D.

Now, if we remove the container from memory, its container layer will also be

removed, and with it, all the changes will be irreversibly deleted. If we need

our changes to persist even beyond the lifetime of the container, this is not a

solution. Luckily, we have better options in the form of Docker volumes. Let's

get to know them.

Creating volumes
When using Docker Desktop on a macOS or Windows computer, containers

are not running natively on macOS or Windows but rather in a (hidden) VM

created by Docker Desktop.



To demonstrate how and where the underlying data structures are created in

the respective �lesystem (MacOS or Windows), we need to be a bit creative. If,

on the other hand, we are doing the same on a Linux computer, things are

straightforward.

Let's start with a simple exercise to create a volume:

�. Open a new Terminal window and type in this command:

$ docker volume create sample

You should get this response:

sample

Here, the name of the created volume will be the output.

The default volume driver is the so-called local driver, which stores the

data locally in the host �lesystem.

�. The easiest way to �nd out where the data is stored on the host is by

using the docker volume inspect command on the volume we just

created. The actual location can differ from system to system, so this is

the safest way to �nd the target folder. So, let's use this command:

$ docker volume inspect sample

We should see something like this:

Figure 5.1: Inspecting the Docker volume called sample

The host folder can be found in the output under Mountpoint. In our case,

the folder is /var/lib/docker/volumes/sample/_data.



�. Alternatively, we can create a volume using the dashboard of Docker

Desktop:

a. Open the dashboard of Docker Desktop.

b. On the left-hand side, select the Volumes tab.

c. Click the blue button, as shown in the following screenshot:

Figure 5.2: Creating a new Docker volume with Docker for Desktop

d. Then type sample-2 as the name for the new volume into the

textbox of the New Volume popup and click Create. You should now

see this:

Figure 5.3: List of Docker volumes shown in Docker Desktop

There are other volume drivers available from third parties, in the form of

plugins. We can use the --driver parameter in the create command to select a

different volume driver.



Other volume drivers use different types of storage systems to back a volume,

such as cloud storage, Network File System (NFS) drives, software-de�ned

storage, and more. The discussion of the correct usage of other volume drivers

is beyond the scope of this book, though.

Nevertheless, here is a list of popular volume drivers, including their

manufacturer and main usage:

Driver Manufacturer

Description and main

usage

local
Docker

Default driver storing

data on the local host

�lesystem. Suitable for

single-host

deployments and

development

environments.

nfs
Docker

Utilizes Network File

System (NFS) for

sharing volumes

across multiple hosts.

Ideal for distributed

systems requiring

shared storage.

cifs
Docker

Employs the Common

Internet File System

(CIFS) protocol to

mount Samba shares,

facilitating integration

with Windows-based

storage systems.

rclone
Rclone

Enables mounting of

various cloud storage

services (for example,

Google Drive,

Dropbox) as volumes,

allowing containers to

interact with cloud-

based �lesystems.



Driver Manufacturer

Description and main

usage

rexray/ebs
REX-Ray

Integrates with

Amazon Elastic Block

Store (EBS) to provide

persistent block

storage for containers

in AWS environments.

flocker
ClusterHQ

Manages data volumes

for Docker containers,

facilitating data

migration between

hosts in a cluster.

portworx
Portworx

Offers high-

performance,

container-granular

storage solutions with

features such as

replication, snapshots,

and encryption,

suitable for enterprise

environments.

glusterfx
Gluster

Provides scalable

network �lesystem

capabilities, allowing

containers to access

shared storage across

multiple nodes.

azurefile
Microsoft Azure

Connects containers to

Azure File Storage,

enabling persistent

storage for

applications running

in Azure.



Driver Manufacturer

Description and main

usage

gce-pd
Google Cloud

Integrates Google

Compute Engine

Persistent Disks with

Docker, offering

durable block storage

for containers in GCP.

Table 5.1: Popular Docker volume drivers

These drivers extend Docker's storage capabilities, allowing for �exible and

scalable data management across various environments and infrastructures.

Interestingly, AWS – the biggest cloud provider – does not offer a speci�c

Docker volume driver itself, but it supports the use of Docker volume drivers

through Amazon Elastic Container Service (ECS) when using the EC2 launch

type. We can use the built-in local driver or third-party volume drivers such as

REX-Ray, Portworx, or others to manage persistent storage with Docker

volumes.

Mounting a volume
Once we have created a named volume, we can mount it into a container by

following these steps:

�. For this, we can use the --volume or -v parameter in the docker container

run command, like this:

$ docker container run --name test -it \ 
     -v sample:/data \ 
     alpine /bin/sh

If you are working in a clean Docker environment, then the output

produced by this command should look similar to this:

Unable to find image 'alpine:latest' locally latest: 
Pulling from library/alpine 
050382585609: Pull complete 
Digest: sha256: 8914eb54f968791faf6a86... 
Status: Downloaded newer image for alpine:latest 
/ #



Otherwise, you should just see the prompt of the Bourne shell running

inside the Alpine container:

/ #

The preceding command mounts the sample volume to the /data folder

inside the container.

�. Inside the container, we can now create �les in the /data folder, as

follows:

/ # cd /data 
/data # echo "Some data" > data.txt 
/data # echo "Some more data" > data2.txt

�. If we were to navigate to the host folder that contains the data of the

volume and list its content, we should see the two �les we just created

inside the container. But this is a bit more involved, so long as we are

working on a Mac or Windows computer, and will be explained in detail

in the Accessing Docker volumes section. Stay tuned.

�. Exit the tool container by pressing Ctrl + D.

�. Now, let's delete the dangling test container:

$ docker container rm test

�. Next, we must run another one based on CentOS. This time, we are even

mounting our volume to a different container folder, /app/data, like this:

$ docker container run --name test2 -it --rm \ 
     -v sample:/app/data \ 
     centos:7 /bin/bash

You should see an output similar to this:

Figure 5.4: Mounting the sample volume into a CentOS 7 container



The last line of the preceding output indicates that we are at the prompt

of the Bash shell running inside the CentOS container.

�. Once inside the CentOS container, we can navigate to the /app/data

folder to which we have mounted the volume and list its content. We

should see the following:

Figure 5.5: Listing the files of the sample volume inside the CentOS container

This is the de�nitive proof that data in a Docker volume persists beyond

the lifetime of a container, as well as that volumes can be reused by

other, even different, containers from the one that used it �rst.

It is important to note that the folder inside the container to which we

mount a Docker volume is excluded from the Union �lesystem. That is,

each change inside this folder and any of its subfolders will not be part

of the container layer but will be persisted in the backing storage

provided by the volume driver. This fact is really important since the

container layer is deleted when the corresponding container is stopped

and removed from the system.

�. Exit the CentOS container with Ctrl + D.

Great – we have learned how to mount Docker volumes into a container! Next,

we will learn how to delete existing volumes from our system.

Removing volumes
Volumes can be removed using the docker volume rm command. It is

important to remember that removing a volume destroys the containing data

irreversibly, and thus is to be considered a dangerous command. Docker helps

us a bit in this regard, as it does not allow us to delete a volume that is still in

use by a container. Always make sure, before you remove or delete a volume,



that you either have a backup of its data or you don't need this data anymore.

Let's learn how to remove volumes by following these steps:

�. The following command deletes the sample volume that we created

earlier:

$ docker volume rm sample

In case you get an error saying that the volume is still in use, please make

sure that both test and test2 containers have been removed.

�. After executing the preceding command, double-check that the folder on

the host has been deleted. You can use this command to list all volumes

de�ned on your system:

$ docker volume ls

Make sure the sample volume has been deleted.

�. Now, as an exercise, also remove the sample-2 volume from your system.

�. To remove all running containers to clean up the system, run the

following command:

$ docker container rm -v -f $(docker container ls -aq)

�. Note that by using the -v or --volume �ag in the command you use to

remove a container, you can ask the system to also remove any

anonymous volume associated with that particular container. Of course,

that will only work if the particular volume is only used by this

container.

In the next section, we will show you how to access the backing folder of a

volume when working with Docker Desktop.

Accessing Docker volumes
Now, let's, for a moment, assume that we are on a Mac with macOS. This

operating system is not based on Linux but on a different Unix �avor. Let's see

if we can �nd the data structure for the sample and sample-2 volumes, where

the docker volume inspect command told us so:

�. First, let's create two named Docker volumes, either using the command

line or doing the same via the dashboard of Docker for Desktop:



$ docker volume create sample 
$ docker volume create sample-2

�. In your Terminal, try to navigate to that folder:

$ cd /var/lib/docker/volumes/sample/_data

On the author's MacBook Air, this is the response to the preceding

command:

Figure 5.6: Accessing the volumes directory on a Mac

This was expected since Docker is not running natively on Mac but

inside a slim VM, as mentioned earlier in this chapter.

Similarly, if you are using a Windows machine, you won't �nd the data

where the inspect command indicated.

It turns out that on a Mac, the data for the VM that Docker creates can be

found in the ~/Library/Containers/com.docker.docker/Data/vms/0 folder.

To access this data, we need to somehow get into this VM. On a Mac, we

have two options to do so. The �rst is to use the terminal screen

command. However, this is very speci�c to macOS, and thus, we will not

discuss it here. The second option is to get access to the �lesystem of

Docker Mac via the special nsenter command, which should be executed

inside a Linux container such as Debian. This also works on Windows,

and thus, we will show the steps needed using this second option.

�. To run a container that can inspect the underlying host �lesystem on

your system, use this command:

$ docker container run -it --privileged --pid=host \ 
    debian nsenter -t 1 -m -u -n -i sh

When running the container, we execute the following command inside

the container:

nsenter -t 1 -m -u -n -i sh



If that sounds complicated to you, don't worry; you will understand

more as we proceed through this book. If there is one takeaway, then it is

to realize how powerful the right use of containers can be.

�. From within this container, we can now list all the volumes that are

de�ned with / # ls -l /var/lib/docker/volumes. What we get should

look similar to this:

Figure 5.7: List of Docker volumes via nsenter

�. Next, navigate to the folder representing the mount point of the volume:

/ # cd /var/lib/docker/volumes/sample/_data

�. Then list its content, as follows:

/var/lib/docker/volumes/sample/_data # ls –l

This should output the following:

Figure 5.8: List files in volume sample

The folder is currently empty since we have not yet stored any data in

the volume.

�. Similarly, for our sample-2 volume, we can use the following command:

/ # cd /var/lib/docker/volumes/sample-2/_data 
/var/lib/docker/volumes/sample-2/ # ls –l

Again, this should output a similar result, indicating that the folder is

currently empty.



�. Next, let's generate two �les with data in the sample volume from within

an Alpine container. First, open a new Terminal window, since the other

one is blocked by our nsenter session.

�. To run the container and mount the sample volume to the /data folder of

the container, use the following code:

$ docker container run --rm -it \ 
    -v sample:/data alpine /bin/sh

��. Generate two �les in the /data folder inside the container, like this:

/ # echo "Hello world" > /data/sample.txt 
/ # echo "Other message" > /data/other.txt

��. Exit the Alpine container by pressing Ctrl + D.

��. Back in the nsenter session, try to list the content of the sample volume

again using this command:

/ # cd /var/lib/docker/volumes/sample/_data 
/ # ls -al

This time, you should see this:

Figure 5.9: Volume sample containing the two files created in the Alpine container

This indicates that we have data written to the �lesystem of the host.

��. Let's try to create a �le from within this special container, and then list

the contents of the folder, as follows:

/ # echo "I love Docker" > docker.txt

��. Now, let's see what we got:

/ # ls –l

This gives us something like this:



Figure 5.10: Volume containing file generated directly on the host

�. Let's see if we can see this new �le from within a container mounting the

sample volume. From within a new Terminal window, run this

command:

$ docker container run --rm \ 
    -v sample:/data \ 
    centos:7 ls -l /data

This should output this:

Figure 5.11: List of files as observed from within the Alpine container

The preceding output is showing us that we can add content directly to

the host folder backing the volume and then access it from a container

that has the volume mounted.

�. To exit our special privileged container with the nsenter tool, we can just

press Ctrl + D twice.

We have now created data using two different methods, as follows:

From within a container that has a sample volume mounted

Using a special privileged folder to access the hidden VM used by Docker

for Desktop, and directly writing into the backing folder of the sample

volume

In the next section, we will learn how to share data between containers.

Sharing data between containers



Containers are like sandboxes for the applications running inside them. This

is mostly bene�cial and wanted, to protect applications running in different

containers from each other. It also means that the whole �lesystem visible to

an application running inside a container is private to this application, and no

other application running in a different container can interfere with it.

At times, though, we want to share data between containers. Say an

application running in container A produces some data that will be consumed

by another application running in container B. How can we achieve this? Well,

I'm sure you've already guessed it – we can use Docker volumes for this

purpose. We can create a volume and mount it to container A, as well as to

container B. In this way, both applications A and B have access to the same

data.

Now, as always, when multiple applications or processes concurrently access

data, we have to be very careful to avoid inconsistencies. To avoid concurrency

problems such as race conditions, we should ideally have only one application

or process that is creating or modifying data, while all other processes

concurrently accessing this data only read it.

We can enforce a process running in a container to only be able to read the

data in a volume by mounting this volume as read-only. Here's how we can do

this:

�. Execute the following command:

$ docker container run -it --name writer \ 
    -v shared-data:/data \ 
    alpine /bin/sh

Race conditions

A race condition is a situation that can occur in computer

programming when the output of a program or process is affected by

the order and timing of events in ways that are unpredictable or

unexpected. In a race condition, two or more parts of a program are

trying to access or modify the same data or resource simultaneously,

and the outcome depends on the timing of these events. This can

result in incorrect or inconsistent output, errors, or crashes.

NOTE



Here, we are creating a container called writer that has a volume, shared-

data, mounted in default read/write mode.

�. Try to create a �le inside this container, like this:

# / echo "I can create a file" > /data/sample.txt

It should succeed.

�. Exit this container by pressing Ctrl + D or typing exit and hitting the

Enter key at the prompt.

�. Then, execute the following command:

$ docker container run -it --name reader \ 
    -v shared-data:/app/data:ro \ 
    ubuntu:25.04 /bin/bash

Here, we have a container called reader that has the same volume

mounted as read-only (ro).

�. First, make sure you can see the �le created in the �rst container, like

this:

$ ls -l /app/data

This should give you something like this:

Figure 5.12: Listing files of a read-only volume

�. Then, try to create a �le, like this:

#/ echo "Try to break read/only" > /app/data/data.txt

It will fail with the following message:

bash: /app/data/data.txt: Read-only file system



This is expected since the volume was mounted as read-only.

�. Let's exit the container by typing exit at the command prompt. Back on

the host, let's clean up all containers and volumes, as follows:

$ docker container rm -f $(docker container ls -aq) 
$ docker volume rm $(docker volume ls -q)

Exercise: Analyze the preceding commands carefully and try to

understand what exactly they do and how they work.

Next, we will show you how to mount arbitrary folders from the Docker host

into a container.

Using host volumes
In certain scenarios, such as when developing new containerized applications

or when a containerized application needs to consume data from a certain

folder produced, say, by a legacy application, it is very useful to use volumes

that mount a speci�c host folder. Let's look at the following example:

$ docker container run --rm -it \ 
    -v $(pwd)/src:/app/src \ 
    alpine:latest /bin/sh

The preceding expression interactively starts an Alpine container with a shell

and mounts the src subfolder of the current directory into the container at

/app/src. We need to use $(pwd) (or pwd, for that matter), which is the current

directory, as when working with volumes, we always need to use absolute

paths.

The �rst time you' execute the preceding command, macOS will ask you for

permission:



Figure 5.13: The operating system asking for permission to access files in a protected folder

Hit Allow and proceed.

Developers use these techniques all the time when they are working on an

application that runs in a container and want to make sure that the container

always contains the latest changes they make to the code, without the need to

rebuild the image and rerun the container after each change.

Let's make a sample to demonstrate how that works. Let's say we want to

create a simple static website while using Nginx as our web server, as follows:

�. First, let's create a new subfolder on the host. The best place to do this is

inside the chapter folder we created at the beginning of the chapter.

There, we will put our web assets, such as HTML, CSS, and JavaScript

�les. Use this command to create the subfolder and navigate to it:

$ cd ~/The-Ultimate-Docker-Container-Book-v4 
$ cd chapter-05 
$ mkdir my-web && cd my-web



�. Then, create a simple web page, like this:

$ echo "<h1>Personal Website</h1>" > index.html

�. Now, add a Docker�le that will contain instructions on how to build the

image containing our sample website. Add a �le called Dockerfile to the

folder, with this content:

FROM nginx:alpine 
COPY . /usr/share/nginx/html

The Docker�le starts with the latest Alpine version of Nginx and then

copies all �les from the current host directory into the

/usr/share/nginx/html containers folder. This is where Nginx expects

web assets to be located.

�. Now, let's build the image with the following command:

$ docker image build -t my-website:1.0 .

Please do not forget the period (.) at the end of the preceding command.

The output of this command will look similar to this:

Figure 5.14: Building a Docker image for a sample Nginx web server

�. Finally, we will run a container from this image. We will run the

container in detached mode, like this:

$ docker container run -d \ 
    --name my-site \ 
    -p 8080:80 \ 
    my-website:1.0



Note the -p 8080:80 parameter. We haven't discussed this yet, but we

will do so in detail in Chapter 10, Single-Host Networking. At the moment,

just know that this maps the container port 80 on which Nginx is

listening for incoming requests to port 8080 of your laptop, where you

can then access the application.

�. Now, open a browser tab and navigate to

http://localhost:8080/index.html; you should see your website, which

currently consists only of a title, Personal Website.

�. Now, edit the index.html �le in your favorite editor so that it looks like

this:

<h1>Personal Website - Version 2</h1> 
<p>This is some text</p>

�. Now, save it, and then refresh the browser. Oh! That didn't work. The

browser still displays the previous version of the index.html �le, which

consists only of the title. So, let's stop and remove the current container,

then rebuild the image and rerun the container, as follows:

$ docker container rm -f my-site && \ 
  docker image build -t my-website:1.0 . && \ 
  docker container run -d \ 
    --name my-site \ 
    -p 8080:80 \ 
    my-website:1.0

�. Refresh the browser again. This time, the new content should be shown.

Well, it worked, but there is way too much friction involved. Imagine you

have to do this every time you make a simple change to your website.

That's not sustainable.

��. Now is the time to use host-mounted volumes. Once again, remove the

current container and rerun it with the volume mount, like this:

$ docker container rm -f my-site 
$ docker container run -d \ 
    --name my-site \ 
    -v $(pwd):/usr/share/nginx/html \ 
    -p 8080:80 \ 
    my-website:1.0



�. Now, append some more content to the index.html �le and save it. Then,

refresh your browser. You should see the changes. This is exactly what

we wanted to achieve; we also call this an edit-and-continue experience.

You can make as many changes in your web �les and always

immediately see the result in the browser, without having to rebuild the

image and restart the container containing your website.

�. When you're done playing with your web server and wish to clean up

your system, remove the container with the following command:

$ docker container rm -f my-site

It is important to note that the updates are now propagated bi-directionally. If

you make changes on the host, they will be propagated to the container, and

vice versa. It's also important to note that when you mount the current folder

into the container target folder, /usr/share/nginx/html, the content that is

already there is replaced by the content of the host folder.

In the next section, we will learn how to de�ne volumes used in a Docker

image.

Defining volumes in images
If we go back to what we learned about containers in Chapter 4, Creating and

Managing Container Images, we will recall this: the �lesystem of each

container, when started, is made up of the immutable layers of the underlying

image, plus a writable container layer speci�c to this very container. All

changes that the processes running inside the container make to the

�lesystem will be persisted in this container layer. Once the container is

stopped and removed from the system, the corresponding container layer is

deleted from the system and irreversibly lost.

Some applications, such as databases running in containers, need to persist

their data beyond the lifetime of the container. In this case, they can use

Note

If you are working on Windows, a pop-up window will be displayed

that says Docker wants to access the hard drive, and that you have to

click on the Share access button.

NOTE



volumes. To make things a bit more explicit, let's look at a concrete example.

MongoDB is a popular open source document database. Many developers use

MongoDB as a storage service for their applications. To support this, the

maintainers of MongoDB have created an image and published it on Docker

Hub, which can be used to run an instance of the database in a container. This

database will produce data that needs to be persisted long-term, but the

MongoDB maintainers do not know who uses this image and how it is used.

So, they can't in�uence the docker container run command with which the

users of the database will start this container. So, how can they de�ne

volumes?

Luckily, there is a way of de�ning volumes in the Docker�le. The keyword to

do so is VOLUME, and we can either add the absolute path to a single folder or a

comma-separated list of paths. These paths represent the folders of the

container's �lesystem. Let's look at a few samples of such volume de�nitions,

as follows:

VOLUME /app/data 
VOLUME /app/data, /app/profiles, /app/config 
VOLUME ["/app/data", "/app/profiles", "/app/config"]

The �rst line in the preceding snippet de�nes a single volume to be mounted

at /app/data. The second line de�nes three volumes as a comma-separated

list. The last one de�nes the same as the second line, but this time, the value is

formatted as a JSON array.

When a container is started, Docker automatically creates a volume and

mounts it to the corresponding target folder of the container for each path

de�ned in the Docker�le. Since each volume is created automatically by

Docker, it will have SHA-256 as its ID.

At container runtime, the folders de�ned as volumes in the Docker�le are

excluded from the Union �lesystem, and thus any changes in those folders do

not change the container layer but are persisted to the respective volume. It is

now the responsibility of the operations engineers to make sure that the

backing storage of the volumes is properly backed up.

We can use the docker image inspect command to get information about the

volumes de�ned in the Docker�le. Let's see what MongoDB gives us by

following these steps:



�. First, we will pull the image with the following command:

$ docker image pull mongo:8.0.8

You should see this:

Figure 5.15: Pulling the latest MongoDB image from Docker Hub

�. Then, we will inspect this image and use the --format parameter to only

extract the essential part from the massive amount of data, as follows:

$ docker image inspect \ 
    --format='{{json .Config.Volumes}}' \ 
    mongo:8.0.8 | jq .

Note | jq . at the end of the command. We are piping the output of

docker image inspect into the jq tool, which nicely formats the output.

The preceding command will return the following result:

Tip

If you haven't installed jq yet on your system, you can do so with brew
install jq on macOS or choco install jq on Windows.

NOTE



Figure 5.16: Volumes section of the MongoDB configuration

As we can see, the Docker�le for MongoDB de�nes two volumes at

/data/configdb and /data/db.

�. Now, let's run an instance of MongoDB in the background as a daemon,

as follows:

$ docker run --name my-mongo -d mongo:8.0.8

�. We can now use the docker container inspect command to get

information about the volumes that have been created, among other

things. Use this command to just get the volume information:

$ docker inspect --format '{{json .Mounts}}' \ 
    my-mongo | jq .

The preceding command should output something like this:

Figure 5.17: Inspecting the MongoDB volumes



The Source �eld gives us the path to the host directory, where the data

produced by MongoDB inside the container will be stored. This way,

your backup operators will know which folders to back up in production.

Before you leave, clean up the MongoDB container with the following

command:

$ docker rm -f my-mongo

That's it for the moment concerning volumes. In the next section, we will

explore how we can con�gure applications running in containers and the

container image build process itself.

Configuring containers
More often than not, we need to provide some con�guration to the

application running inside a container. The con�guration is often used to

allow the same container to run in very different environments, such as in

development, test, staging, or production environments. In Linux,

con�guration values are often provided via environment variables.

We have learned that an application running inside a container is completely

shielded from its host environment. Thus, the environment variables that we

see on the host are different from the ones that we see within a container.

Let's prove this by looking at what is de�ned on our host:

�. Use this command to display a list of all environment variables de�ned

for your Terminal session:

$ export

On the author's macOS, they see something like this (shortened):

... 
COLORTERM=truecolor 
COMMAND_MODE=unix2003 
... 
HOME=/Users/gabriel 
HOMEBREW_CELLAR=/opt/homebrew/Cellar 
HOMEBREW_PREFIX=/opt/homebrew 
HOMEBREW_REPOSITORY=/opt/homebrew 
INFOPATH=/opt/homebrew/share/info:/opt/homebrew/...: 
LANG=en_GB.UTF-8 



LESS=-R 
LOGNAME=gabriel 
...

�. Next, let's run a shell inside an Alpine container:

a. Run the container with this command:

$ docker container run --rm -it alpine /bin/sh

b. Just as a reminder, we are using the --rm command-line parameter

so that we do not have to remove the dangling container once we

stop it.

c. Then, list the environment variables we can see there with this

command:

/ # export

This should produce the following output:

Figure 5.18: Environment variable inside an Alpine container

The preceding output is different than what we saw directly on the host.

It is more proof that a container offers a sandboxed environment,

distinct from the host environment to the user.

�. Hit Ctrl + D to leave and stop the Alpine container.

Next, let's de�ne environment variables for containers.

Defining environment variables for containers
Now, the good thing is that we can pass some con�guration values into the

container at start time. We can use the --env (or the short form, -e) parameter

in the form of --env <key>=<value> to do so, where <key> is the name of the

environment variable and <value> represents the value to be associated with

that variable. Let's assume we want the app that is to be run in our container



to have access to an environment variable called LOG_DIR, with a value of

/var/log/my-log. We can do so with this command:

$ docker container run --rm -it \ 
    --env LOG_DIR=/var/log/my-log \ 
    alpine /bin/sh

The preceding code starts a shell in an Alpine container and de�nes the

requested environment inside the running container. To prove that this is

true, we can execute this command inside the Alpine container:

/ # export | grep LOG_DIR

The output should be as follows:

export LOG_DIR='/var/log/my-log'

The output looks as expected. We now have the requested environment

variable with the correct value available inside the container. We can, of

course, de�ne more than just one environment variable when we run a

container. We just need to repeat the --env (or -e) parameter. Have a look at

this sample:

$ docker container run --rm -it \ 
    --env LOG_DIR=/var/log/my-log \ 
    --env MAX_LOG_FILES=5 \ 
    --env MAX_LOG_SIZE=1G \ 
    alpine /bin/sh

After running the preceding command, we are left at the command prompt

inside the Alpine container:

/ #

Let's list the environment variables with the following command:

/ # export | grep LOG

We will see the following:



Figure 5.19: Environment variables defined via the --env parameter

Now, let's look at situations where we have many environment variables to

con�gure.

Using configuration files
Complex applications can have many environment variables to con�gure, and

thus, our command to run the corresponding container can quickly become

unwieldy. For this purpose, Docker allows us to pass a collection of

environment variable de�nitions as a �le. We have the --env-file parameter

in the docker container run command for this purpose.

Let's try this out, as follows:

�. Navigate to the source folder for chapter 5 that we created at the

beginning of this chapter:

$ cd ~/The-Ultimate-Docker-Container-Book-v4 
$ cd chapter-05

�. Create a subfolder, config-file, and navigate to it, like this:

$ mkdir config-file && cd config-file

�. Use your favorite editor to create a �le called development.config in this

folder. Add the following content to the �le and save it, as follows:



LOG_DIR=/var/log/my-log 
MAX_LOG_FILES=5 
MAX_LOG_SIZE=1G

Notice how we have the de�nition of a single environment variable per

line in <key>=<value> format, where, once again, <key> is the name of the

environment variable, and <value> represents the value to be associated

with that variable.

�. Now, from within the config-file subfolder, let's run an Alpine

container, pass the �le as an environment �le, and run the export

command inside the container to verify that the variables listed inside

the �le have indeed been created as environment variables inside the

container, like this:

$ docker container run --rm -it \ 
    --env-file ./development.config \ 
    alpine sh -c "export | grep LOG"

Indeed, the variables are de�ned, as we can see in the output generated:

Figure 5.20: Using a file to define environment variables

This is exactly what we expected.

Next, let's look at how to de�ne default values for environment variables that

are valid for all container instances of a given Docker image.

Defining environment variables in container
images



Sometimes, we want to de�ne some default value for an environment variable

that must be present in each container instance of a given container image.

We can do so in the Docker�le that is used to create that image by following

these steps:

�. Navigate to the source folder for chapter 5 that we created at the

beginning of this chapter:

$ cd ~/The-Ultimate-Docker-Container-Book-v4 
$ cd chapter-05

�. Create a subfolder called config-in-image and navigate to it, like this:

$ mkdir config-in-image && cd config-in-image

�. Use your favorite editor to create a �le called Dockerfile in the config-in-

image subfolder. Add the following content to the �le and save it:

FROM alpine:latest 
ENV LOG_DIR=/var/log/my-log 
ENV MAX_LOG_FILES=5 
ENV MAX_LOG_SIZE=1G

�. Create a container image called my-alpine using the preceding Docker�le,

as follows:

$ docker image build -t my-alpine .

�. Run a container instance from this image that outputs the environment

variables de�ned inside the container, like this:

$ docker container run --rm -it \ 
    my-alpine sh -c "export | grep LOG"

You should see the following in your output:

Note

Don't forget the period at the end of the preceding line!

NOTE



Figure 5.21: Environment variables as defined in Docker image

This is exactly what we expected.

�. The good thing, though, is that we are not stuck with those variable

values at all. We can override one or many of them by using the --env

parameter in the docker container run command. Use this command:

$ docker container run --rm -it \ 
    --env MAX_LOG_SIZE=2G \ 
    --env MAX_LOG_FILES=10 \ 
    my-alpine sh -c "export | grep LOG"

�. Now, have a look at the following command and its output:

Figure 5.22: Overridden environment variables

�. We can also override default values by using environment �les together

with the --env-file parameter in the docker container run command.

Please try it out for yourself.

In the next section, we are going to introduce environment variables that are

used at the build time of a Docker image.



Environment variables at build time
Sometimes, we want to be able to de�ne some environment variables that are

valid at the time we build a container image. Imagine that you want to de�ne

a BASE_IMAGE_VERSION environment variable that shall then be used as a

parameter in your Docker�le. Imagine the following Docker�le:

ARG BASE_IMAGE_VERSION=12.7-stretch 
FROM node:${BASE_IMAGE_VERSION} 
WORKDIR /app 
COPY packages.json . 
RUN npm install 
COPY . . 
CMD npm start

We are using the ARG keyword to de�ne a default value that is used each time

we build an image from the preceding Docker�le. In this case, that means that

our image uses the node:12.7-stretch base image.

Now, if we want to create a special image for, say, testing purposes, we can

override this variable at image build time using the --build-arg parameter, as

follows:

$ docker image build \ 
    --build-arg BASE_IMAGE_VERSION=12.7-alpine \ 
    -t my-node-app-test .

In this case, the resulting my-node-app-test:latest image will be built from the

node:12.7-alpine base image and not from the node:12.7-stretch default

image.

To summarize, environment variables de�ned via --env or --env-file are valid

at container runtime. Variables de�ned with ARG in the Docker�le or --build-

arg in the docker container build command are valid at container image build

time. The former is used to con�gure an application running inside a

container, while the latter is used to parameterize the container image build

process.

In the next and last section of this chapter, we will explore the topic of

persistent storage and stateful container patterns.



Persistent storage and stateful container
patterns
Containers are inherently ephemeral; they are designed to be stateless and

easily replaceable. However, many real-world applications require the ability

to persist data beyond the lifecycle of a single container instance. This

necessitates the implementation of persistent storage solutions and patterns

that support stateful behavior within containerized environments.

Understanding persistent storage in Docker
In Docker, persistent storage is achieved through volumes and bind mounts:

Volumes: Managed by Docker, volumes are stored in a part of the host

�lesystem that is managed by Docker (/var/lib/docker/volumes/ on

Linux). They are the preferred mechanism for persisting data generated

by and used by Docker containers.

Bind mounts: These mount a �le or directory from the host �lesystem

into the container. While they offer more control, they are dependent on

the directory structure and OS of the host machine.

Volumes are generally recommended over bind mounts due to their

portability and management features, though bind mounts are often used by

software engineers during the development process to dynamically mount

code into their application container.

Patterns for managing stateful containers
Managing stateful applications in containers involves speci�c patterns to

ensure data persistence and consistency:

Data volume containers: An older pattern where a container is dedicated

solely to holding volumes to be shared with other containers. This

pattern has largely been replaced by named volumes.

Named volumes: Creating and managing volumes independently of

containers allows for better data persistence and sharing across multiple

containers.

StatefulSets (in Kubernetes): For orchestrated environments – as we will

discuss in section 3 of this book, StatefulSets manage the deployment



and scaling of a set of Pods, and provide guarantees about the ordering

and uniqueness of these Pods. Each Pod gets its own persistent volume.

Volume plugins: Docker supports volume plugins that allow volumes to

be stored on remote hosts or cloud providers, enabling data persistence

across different environments.

Best practices for persistent storage
We recommend the following best practices when dealing with persistent

storage:

Use volumes for persistence: Prefer Docker-managed volumes over bind

mounts for better portability and management

Backup and restore: Implement regular backup strategies for volumes to

prevent data loss

Monitor storage usage: Keep an eye on storage consumption to avoid

running out of space, which can cause containers to fail

Security considerations: Ensure that sensitive data stored in volumes is

properly secured, using appropriate permissions and, if necessary,

encryption

Use volume drivers: Leverage volume drivers for integrating with

external storage systems, providing �exibility and scalability

By adhering to these practices and understanding the patterns for managing

stateful containers, we can effectively handle persistent data in Docker

environments, ensuring data durability and application reliability.

With this, we have come to the end of this chapter.

Summary
In this chapter, we have explored the essential concepts related to Docker data

volumes and con�guration, highlighting their critical role in containerized

applications. You learned how to effectively create, mount, and manage

Docker volumes to ensure data persistence across container lifecycles. We

discussed the practical approaches to sharing data between containers and

the host system, providing you with the skills necessary to implement robust

container solutions.



You also mastered container con�guration techniques, such as the use of

environment variables and con�guration �les. These powerful mechanisms

allow applications to be �exible and adaptable across different environments,

enhancing maintainability and consistency.

Lastly, we introduced the topic of persistent storage and stateful container

patterns. In this section, you learned about the nuances of maintaining

application state and data integrity beyond the ephemeral lifespan of

containers. We examined the critical differences between volumes and bind

mounts, emphasizing why Docker-managed volumes are generally preferable.

You discovered key patterns for managing stateful containers, such as named

volumes, data volume containers, and Kubernetes StatefulSets. Additionally,

we discussed best practices to ensure secure, scalable, and reliable persistent

storage in your Docker and orchestration environments.

Equipped with this knowledge, you're now ready to handle complex

containerized applications that require persistent data storage and stateful

management patterns, enabling you to build and deploy enterprise-grade

applications con�dently.

In the next chapter, we are going to introduce techniques commonly used to

allow a developer to evolve, modify, debug, and test their code while running

in a container.

Further reading
The following articles provide more in-depth information:

Use volumes: http://dockr.ly/2EUjTml

Manage data in Docker: http://dockr.ly/2EhBpzD

Docker volumes on Play with Docker (PWD): http://bit.ly/2sjIfDj

nsenter—Linux man page, at https://bit.ly/2MEPG0n

Set environment variables: https://docs.docker.com/reference/cli/docker/

Understanding how ARG and FROM interact: https://dockr.ly/2OrhZgx

Questions
Try to answer the following questions to assess your learning progress:

https://http//dockr.ly/2EUjTml
https://http//dockr.ly/2EhBpzD
https://http//bit.ly/2sjIfDj
https://bit.ly/2MEPG0n
https://docs.docker.com/reference/cli/docker/
https://dockr.ly/2OrhZgx


�. What is the primary difference between Docker volumes and bind

mounts?

�. Why are volumes generally recommended over bind mounts for data

persistence in Docker?

�. How does Docker ensure data persistence when a container is removed?

�. What is a common use case for bind mounts in Docker?

�. Can you share a volume between multiple containers? If so, how?

�. How would you create a named data volume with a name such as my-

products using the default driver?

�. How would you run a container using the Alpine image and mount the

my-products volume in read-only mode into the /data container folder?

�. How would you locate the folder that is associated with the my-products

volume and navigate to it? Also, how would you create a �le, sample.txt,

with some content?

�. How would you run another Alpine container where you mount the my-

products volume to the /app-data folder, in read/write mode? Inside this

container, navigate to the /app-data folder and create a hello.txt �le

with some content.

��. How would you mount a host volume – for example, ~/my-project – into

a container?

��. How would you remove all unused volumes from your system?

��. How can you inspect the details of a Docker volume?

��. What are the implications of using bind mounts regarding security?

��. The list of environment variables that an application running in a

container sees is the same as if the application were to run directly on

the host.

a. True

b. False

��. Your application that shall run in a container needs a huge list of

environment variables for con�guration. What is the simplest method to

run a container with your application and provide all this information to

it?



Answers
Here are the answers to this chapter's questions:

�. Docker volumes are managed by Docker and stored in a part of the host

�lesystem that Docker manages (/var/lib/docker/volumes/ on Linux).

They are the preferred mechanism for persisting data. Bind mounts, on

the other hand, mount a �le or directory from the host �lesystem into

the container and rely on the host's directory structure, making them

less portable.

�. Volumes are managed by Docker, offering better portability, easier

backup and restore processes, and safer sharing among containers. They

are less dependent on the host's directory structure and provide a more

consistent environment across different systems.

�. By using volumes, Docker decouples the data from the container's

lifecycle. Even if a container is removed, the data stored in a volume

persists and can be attached to a new container.

�. Bind mounts are commonly used in development environments to

mount source code or con�guration �les from the host into the

container, allowing real-time code changes without rebuilding the

image.

�. Yes, Docker volumes can be shared between multiple containers by

specifying the same volume name in the -v or --mount �ag when

running each container. This allows containers to read from and write to

the same data store.

�. To create a named volume, run the following command:

$ docker volume create my-products

�. Execute the following command:

$ docker container run -it --rm \ 
    -v my-products:/data:ro \ 
    alpine /bin/sh

�. To achieve this result, do this:

a. To get the path on the host for the volume, use this command:

$ docker volume inspect my-products | grep Mountpoint



This should result in the following output:

"Mountpoint": "/var/lib/docker/volumes/my-products/_data"

b. Now, execute the following command to run a container and

execute nsenter within it:

$ docker container run -it --privileged --pid=host \ 
    debian nsenter -t 1 -m -u -n -i sh

c. Navigate to the folder containing the data for the my-products

volume:

/ # cd /var/lib/docker/volumes/my-products/_data

d. Create a �le containing the text ""I love Docker"" within this

folder:

/ # echo "I love Docker" > sample.txt

e. Exit nsenter and its container by pressing Ctrl + D.

f. Execute the following command to verify that the �le generated in

the host �lesystem is indeed part of the volume and accessible to

the container to which we'll mount this volume:

$ docker container run --rm \ 
    --volume my-products:/data \ 
    alpine ls -l /data

The output of the preceding command should look similar to this:

total 4 
-rw-r--r--    1 root     root    14 Dec  4 17:35 sample.txt

And indeed, we can see the �le.

g. Optional: Run a modi�ed version of the command to output the

content of the sample.txt �le.

�. Execute the following command:

$ docker run -it --rm -v my-products:/data:ro \ 
   alpine /bin/sh 



/ # cd /data 
/data # cat sample.txt

In another Terminal, execute this command:

$ docker run -it --rm -v my-products:/app-data \ 
   alpine /bin/sh 
/ # cd /app-data 
/app-data # echo "Hello other container" > hello.txt 
/app-data # exit

��. Execute a command such as this:

$ docker container run -it --rm \ 
    -v $HOME/my-project:/app/data \ 
    alpine /bin/sh

��. Exit both containers and then, back on the host, execute this command:

$ docker volume prune

��. Use this command:

$ docker volume inspect my_volume

This provides detailed information about the volume, including its

mount point and usage.

��. Bind mounts can pose security risks because they provide the container

with access to the host's �lesystem. If not properly managed, this can

lead to unauthorized access or modi�cation of host �les. It's essential to

set appropriate permissions and use read-only mounts when necessary.

��. The answer is false (B). Each container is a sandbox and thus has its very

own environment.

��. Collect all environment variables and their respective values in a

con�guration �le, which you then provide to the container with the --

env-file command-line parameter in the docker container run

command, like so:

$ docker container run --rm -it \ 
    --env-file ./development.config \ 
    alpine sh -c "export"
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